自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

吴建明wujianming_110117

吴建明专业博客wujianming_110117

  • 博客(1448)
  • 问答 (8)
  • 收藏
  • 关注

原创 原子层沉积(ALD)和化学气相沉积(CVD)微电子制造铜金属化的研究进展

原子层沉积(ALD)和化学气相沉积(CVD)微电子制造铜金属化的研究进展Atomic Layer Deposition (ALD) andChemical Vapor Deposition (CVD)of Copper-based Metallizationfor Microelectronic Fabrication

2021-05-15 06:22:33 4

原创 camera数字降噪(DNR)

camera数字降噪(DNR)闭路电视摄像机 无论多么出色和弱光,在黑暗中拍摄视频监控录像时都会不可避免地产生一些噪音。噪声是任何电子通信中不可避免的部分,无论是视频还是音频。本质上是静态的–视频信号中的干扰,在图像帧中表现为白色和黑色斑点,使其呈现颗粒状外观。昏暗的光线不足会导致相机难以区分颜色和对比度,导致图像中的像素混合在一起,而不是正确且细节丰富。当不良照明导致图像中的光太接近传感器中自然存在的噪声水平时,也会发生图像噪声,从而使传感器很难感应到图像。在较大的分辨率下,噪声也更为普遍(或至少更

2021-05-15 05:55:05 157

原创 晶圆代工解决方案

晶圆代工解决方案中芯国际是一家纯晶圆代工厂,向全球客户提供0.35微米到14纳米8寸和12寸芯片代工与技术服务。中芯国际除高端的制造能力之外,还为客户提供全方位的晶圆代工解决方案,包括光罩制造、IP研发及后段辅助设计服务等一站式服务(包含凸块加工服务、晶圆探测,以及最终的封装、测试等)。全面一体的晶圆代工解决方案,目标是更有效的帮助客户降低成本,以缩短产品上市时间。一站式服务28纳米技术简介中芯国际是中国大陆第一家提供28纳米先进工艺制程的纯晶圆代工企业。中芯国际的28纳米技术是业界主流技术,包

2021-05-13 06:04:41 54

原创 Camera噪声问题

Camera噪声问题Camera RGB 域的噪声以上部分属于sensor processing,接下来的部分属于color、luminance processing。gammagamma是在RGB域设置一个gamma table去对应给每一个像素值增加一个适当的增益提高暗区的亮度水平。gamma的由来是由古老的显示屏来的,gamma校正基本上是为了提升暗部细节,可以理解为在数字gain增加,会显著增加暗区的噪声,针对不同平台或者设备gamma的核心理念都是一样的,只不过对于gamma LUT的数据

2021-05-12 06:27:09 8

原创 camera中LENS和SENSOR的CRA是如何搭配的?

camera中LENS和SENSOR的CRA是如何搭配的?camera中,lens和sensor的搭配是非常关键的问题。但这两者是如何搭配的呢?一般在Sensor data sheet中会附有全视场CRA参考值,不同sensor厂家有不同的要求,可以按照这个来做设计参考。有的Sensor厂家在公开的数据表中不会show出来,但可以跟索取。CRA 是什么东东啊,一般的LENS厂家都会提供能与只配合的sensor资料,只要sensor 能放到相应LENS的HOLDER 里去就可以了,sensor不有1/3

2021-05-12 06:18:29 50

原创 Camera Lens Coating

Camera Lens CoatingCoating Progress转换镜头,根据要求进行OEM和设计。光学元件:望远镜、显微镜、相机和数码相机镜头、放大镜头和远摄镜头、定心镜头、投影镜头、投影镜头、照明镜头、球面和非球面镜头、扫描镜头等。不同透镜的应用土建:大型运动广场、大型会议室、城市环境保护、城市夜景整体图、城市消防森林消防、大型工作广场控制、河工监督、大型渔业、高速公路监督、城市灯光控制。军事:边防,海防,大炮瞄准,潜艇换镜,无人飞机光学雷达跟踪,导弹跟踪。夜锁:石油厂铁厂福特无光

2021-05-12 05:56:37 102

原创 原子层沉积技术

原子层沉积技术原子层沉积技术原子层沉积,ALD 是一种适合于研制最新的和前沿性的产品的薄膜制备技术。原子层沉积 ALD 也是一种用于纳米技术研究的有效方法。典型的原子层沉积应用是在各种尺寸和形状的基底上沉积高精度、无针孔、高保形的纳米薄膜。针对目前的市场需要,Beneq 通过提供具有创新性应用和可接受的购置成本的ALD 设备为企业的快速发展提供了必要的条件。ALD 薄膜技术ALD 是一种化学气相沉积(CVD)技术。它最初被用于生产纳米结构的绝缘体(Al2O3/TiO2)和薄膜电致发光显示器(TFE

2021-05-11 06:13:18 21 2

原创 CVD-ALD前驱体材料

CVD-ALD前驱体材料ALD前驱体源瓶特点是什么ALD前驱体源瓶(起泡器)用于固态、液态及气态超纯物料类的封装,涉及微正压、常压、中低压的危险化学品,对源瓶的安全性和洁净度提出严苛的要求。ALD前驱体源瓶特点:所有管件采用316L不锈钢,内部经400目机械抛光和电化学抛光,Ra≦0.25微米;阀门有美国世伟洛克球阀和隔膜阀、日本富士金隔膜阀和韩国TK隔膜阀供选择;密封垫片选用纯银镀镍垫片;氦质谱检测泄漏率≦1.0*10-10mbar L/s;可盛装化学品纯度≧99.9995;总残余元素量

2021-05-11 06:03:36 12 1

原创 CPU/GPU/TPU/NPU...XPU都是什么意思?

CPU/GPU/TPU/NPU…XPU都是什么意思?现在这年代,技术日新月异,物联网、人工智能、深度学习等概念遍地开花,各类芯片名词GPU, TPU, NPU,DPU层出不穷…都是什么鬼?与CPU又是什么关系?HW发布了新款Mate 手机,里面有个叫什么NPU的,听起来很厉害,这是什么东西啊?就是人工智能处理器。什么是人工智能处理器?和CPU有啥区别?和GPU有啥区别?不都带个PU吗?本文通俗易懂的科普一下这些所谓的“XPU”!CPUCPU( Central Processing Unit,

2021-05-10 06:12:35 94

原创 PaddlePaddle推理部署

PaddlePaddle推理部署飞桨推理产品简介作为飞桨生态重要的一部分,飞桨提供了多个推理产品,完整承接深度学习模型应用的最后一公里。整体上分,推理产品主要包括如下子产品各产品在推理生态中的关系如下用户使用飞桨推理产品的工作流 如下获取一个飞桨的推理模型,其中有两种方法i. 利用飞桨训练得到一个推理模型ii. 用 X2Paddle 工具从第三方框架(比如 TensorFlow 或者 Caffe 等)产出的模型转化(可选)对模型进行进一步优化, PaddleSlim 工具可以对模型进

2021-05-10 05:27:14 106

原创 硬件软件蓝图灵活的深度学习专业化

硬件软件蓝图灵活的深度学习专业化抽象的专业深度学习(DL)加速堆栈,专为一组特定的框架、模型架构、算子,和数据类型,提供了高性能的吸引力,同时牺牲了灵活性。算法、模型、运算符或数值系统的变化威胁专用硬件加速器的生存能力。提出了VTA,一个可编程的深度学习架构模板,可以在不断变化的工作负载下进行扩展。VTA通过可参数化的体系结构,两级ISA,和一个JIT编译器。两级ISA基于(1)任务ISA显式编排并发计算和内存任务(2)一种微代码ISA,单循环张量张量运算。接下来,提出一个系统配备JIT编译器,

2021-05-09 18:09:54 13

原创 TVMNN编译Compiler栈

TVMNN编译Compiler栈内容纲要前言调研目标TVM介绍TVM源码架构i. FrontEndii. Relayiii. BackEndVTA实现原理及设计思想提炼i. 整体结构ii. VTA Hardwarea. a. 指令集b. 数据流c. 控制流b. VTA Configc. Pyng HLSd. 硬件设计思想提炼e. Chisel Scalarf. SIM C++g. Xilinx Scriptsiii. VTA JITa. Driverb. R

2021-05-09 13:09:06 20

原创 TVM适配NN编译Compiler缺陷

TVM适配NN编译Compiler缺陷内容纲要前言TVM针对VTA的编译流程i. 自定义VTA架构:TVM的缺陷与性能瓶颈TVM缺陷与瓶颈i. 缺陷一:SRAM配置灵活性差ii. 缺陷二:计算阵列配置僵硬iii. 缺陷三:网络支持少TVM源码修改之静态调度搜索算法前言前文NN编译栈之TVM研究报告深度分析TVM的源码结构,编译器特点。本文介绍TVM的当前缺陷以及如何修改源代码弥补缺陷并适配自己开发的神经网络加速器。不久会在GitHub上开源自己的适配修改工作并向TVM仓库提交新的版本

2021-05-09 12:11:25 40

原创 自动微分基本理论

自动微分基本理论神经网络核心是自动微分,本文主要介绍如何使用自动微分,以及自动微分机制,帮助更好的使用自动微分进行训练。一、背景神经网络是由节点和节点间的相互连接组成的。网络中每层的每个节点代表一种特定的函数,对输入进行计算。每个函数都是由不同参数(权重w和偏置b)组成。神经网络训练的过程,就是不断让这些函数的参数进行学习、优化,能够更好的处理后面输入的过程。让神经网络的判断更加准确,首先需要有衡量效果的工具,于是损失函数应运而生。如果想要神经网络的效果好,就要让损失函数尽可能的小,于是深度学习引入

2021-05-09 09:21:53 18

原创 Tensor基本理论

Tensor基本理论深度学习框架使用Tensor来表示数据,在神经网络中传递的数据均为Tensor。Tensor可以将其理解为多维数组,其可以具有任意多的维度,不同Tensor可以有不同的数据类型 (dtype) 和形状 (shape)。同一Tensor的中所有元素的dtype均相同。如果对 Numpy 熟悉,Tensor是类似于 Numpy array 的概念。Tensor创建首先,创建一个 Tensor , 并用 ndim 表示 Tensor 维度的数量:创建类似于vector的1-D T

2021-05-09 08:56:27 15

原创 车辆在线标定

车辆在线标定车辆标定系统会自动生成用于不同车型的标定表。它包括三个部分:前端数据采集监视系统,一个数据上传/下载工具用于上传采集的数据和下载生成的标定表以及用于性能评估的可视化工具。一. 前端在DreamView中,提供了一个数据采集监视器,用于监视数据标定过程。在车辆标定模式下,收集的数据帧在数据标定监视器中是可视化的。数据帧根据其底盘信息划分为不同的行驶条件。收集的数据帧的量显示为进度条。在车载DreamView环境中:选择–setup mode–下的vehicle calibration

2021-05-09 08:14:22 24

原创 Apollo 自动驾驶开发套件(D-KIT)

Apollo 自动驾驶开发套件(D-KIT)

2021-05-09 07:43:30 31

原创 TVM优化GPU机器翻译

TVM优化GPU机器翻译背景神经机器翻译(NMT)是一种自动化的端到端方法,具有克服传统基于短语的翻译系统中的弱点的潜力。最近,阿里巴巴集团正在为全球电子商务部署NMT服务。将Transformer用作NMT系统的关键技术,相对于基于经典RNN / LSTM的模型具有同等(甚至更高)的精度,对于高效的离线训练更为友好。尽管Transformer在离线训练阶段很友好,打破了跨时间步长的依赖性,但在线推理效率不高。在生产环境中,已经发现,初始版本的Transformer的推理速度约为1.5倍至2倍,比LS

2021-05-09 06:41:35 68

原创 TVM 优化 ARM GPU 上的移动深度学习

TVM 优化 ARM GPU 上的移动深度学习随着深度学习的巨大成功,将深度神经网络部署到移动设备的需求正在迅速增长。与桌面平台上所做的类似,在移动设备中使用 GPU 既有利于推理速度,也有利于能源效率。但是,大多数现有的深度学习框架并不很好地支持移动 GPU。难点在于移动 GPU 架构和桌面 GPU 架构之间的区别。这意味着在移动 GPU 上进行优化需要特别努力。非平凡的额外工作最终导致移动 GPU 在大多数深度学习框架中支持不力。TVM 通过引入统一的 IR 堆栈,解决为不同硬件部署的困难,从而轻松

2021-05-08 14:23:48 16

原创 通过 DLPack 构建跨框架深度学习编译器

通过 DLPack 构建跨框架深度学习编译器深度学习框架,如Tensorflow, PyTorch, and ApacheMxNet,快速原型化和部署深度学习模型提供了强大的工具箱。不幸的是,易用性往往以碎片化为代价:孤立地使用每个框架是很容易的。纵向集成使开发简化为常用案例,但冒险走出困境可能比较棘手。一个支持不力的方案是在内存中将算子从一个框架直接传递到另一个框架,而没有任何数据重复或复制。支持此类使用案例,将使用户能够将管道串联在一起,在一个框架(或更快)中,某些算子比在另一个框架中得到更好的支持

2021-05-08 13:26:09 41

原创 TVM 高效保护隐私 ML

TVM 高效保护隐私 ML这篇文章描述了Myelin,一个在值得信赖的硬件飞地中保护隐私的机器学习框架,以及TVM如何使Myelin快速。关键的想法是,TVM,不像其它流行的ML框架,将模型编译成轻量级,优化,免费依赖库,可以适应资源有限利用。尝试创建保护隐私的ML模型!查看 TVM可用的repo示例代码。目的:隐私保护ML机器学习模型受益于庞大而多样化的数据集。遗憾的是,使用此类数据集通常需要信任集中数据聚合器或计算提供商。对于敏感的应用程序,如医疗保健和金融,这是不可取的,因为可能会损害患者的

2021-05-08 12:00:07 26 1

原创 TVM编译机器学习到 WASM 和 WebGPU

TVM编译机器学习到 WASM 和 WebGPUTLDRTVM 深度学习编译器对 WASM 和 WebGPU 的支持。实验表明,TVM 的 WebGPU 后端在将模型部署到 Web 时可以接近原生 GPU 性能。引论计算是现代机器学习应用的支柱之一。引入 GPU 以加快深度学习工作量,大大提高了进步速度。鉴于部署机器学习无处不在的需求日益增长,浏览器成为部署智能应用程序的自然场所。虽然 TensorFlow .js 和 ONNX .js是将机器学习引入浏览器的现有努力,但 Web 版本和本地版本

2021-05-08 11:34:50 31 1

原创 用TVM在硬件平台上部署深度学习工作负载的端到端 IR 堆栈

用TVM在硬件平台上部署深度学习工作负载的端到端 IR 堆栈深度学习已变得无处不在,不可或缺。这场革命的一部分是由可扩展的深度学习系统推动的,如滕索弗洛、MXNet、咖啡和皮托奇。大多数现有系统针对范围狭窄的服务器级 GPU 进行了优化,需要在其它平台,如移动电话、物联网设备和专用加速器(FPGA、ASIC)上部署大量精力。随着深度学习框架和硬件后端数量的增加,建议建立一个统一的中间表示 (IR) 堆栈,以缩小以生产力为中心的深度学习框架与面向性能或效率的硬件后端之间的差距。TVM 是一个新颖的框架,

2021-05-08 10:17:23 42

原创 TVM优化Deep Learning GPU算子

TVM优化Deep Learning GPU算子高效的深度学习算子是深度学习系统的核心。通常,这些算子很难优化,需要HPC专家付出巨大的努力。 端到端张量IR / DSL堆栈TVM使这一过程变得更加容易。如何在TVM的帮助下编写高性能GPU运算符内核。本文以深度卷积(即topi.nn.depthwise_conv2d_nchw)为例,并演示如何在tensorflow中改进已经手工优化的CUDA内核。在不同的工作负载下,最终版本比tf-1.2中优化的内核快2到4倍,在启用了算子融合的情况下,最终版本快3到

2021-05-08 06:15:16 54 3

原创 国内外企业竞争AR HUD

国内外企业竞争AR HUD华为X红旗合作车型首曝:搭载华为AR HUD、智能座舱方案2021年4月18日,上海国际车展正式开放,华为也成了此次车展上的重要亮点之一。据相关报道显示,华为除了联手北汽刚刚推出了极狐阿尔法S之外,还有一款联合红旗打造的新车在上海车展亮相,有消息称这辆车是基于红旗EHS6车型打造。根据现场指示牌显示,这款红旗EHS6同样采用了华为HI解决方案,搭载了AR HUD、智能座舱方案。据悉,智能座舱是华为在车展前夕刚刚发布的智能化部件和解决方案,聚焦于计算平台、鸿蒙OS车机操作系

2021-05-07 05:42:31 95

原创 部署TVM Runtime

部署TVM Runtime本文主要介绍如何在开发板上部署TVM Runtime, 在本地机器安装完整的TVM(包含了TVM Runtime以及编译功能), 并且使用一个简单的远程调用例子测试是否部署成功。本地机器使用的是Linux操作系统,开发板使用的是预装的Fedora系统。开发板与TVM的概述开发板开发板(Embedded AI Development Kit),以 Arm SoC 为硬件平台,Tengine(Arm 中国周易平台)为核心的人工智能基础软件平台 AID,集成典型应用算法,所形成的

2021-05-06 05:34:31 109

原创 端到端TVM编译器(下)

端到端TVM编译器(下)4.3 TensorizationDL工作负载具有很高的运算强度,通常可以分解为张量运算符,如矩阵乘法或一维卷积。这些自然分解导致了最近的添加张量计算原语。这些新的原语带来了机遇和挑战调度;为了提高性能,编译框架必须无缝集成。称之为张量化:类似于SIMD体系结构的矢量化,但是有显著差异。指令输入是多维的,具有固定或可变的长度,每个输入都有不同的数据布局。更重要的是,不能支持一组固定的原语,因为新的加速器是张量指令变体。需要一个可扩展的解决方案。通过分离张量内在声明机制,从调

2021-05-05 09:31:27 33

原创 端到端TVM编译器(上)

端到端TVM编译器(上)摘要将机器学习引入到各种各样的硬件设备中。AI框架依赖于特定于供应商的算子库,针对窄范围的服务器级gpu进行优化。将工作负载部署到新平台,例如手机、嵌入式设备和加速器(例如,FPGA、ASIC)–需要大量手动操作。TVM,一个开源图形级的编译器和算子级优化,提供可移植到不同领域的深度学习工作负载性能硬件后端。TVM解决了特定于深度学习的优化挑战,例如高级算子融合、映射到任意硬件原语,存储潜伏期隐藏。通过采用一种新颖的基于学习的成本建模方法,用于快速探索代码优化。实验表明,TVM在

2021-05-04 23:04:37 26

原创 光速对齐时间序列

光速对齐时间序列“时间序列是无处不在且越来越流行的数据类型[…]”。几乎任何增量测量的信号, 沿时间轴还是线性有序集,可以视为时间序列。示例包括心电图,温度或电压测量,音频,服务器日志,还有重量级数据,例如视频和时间分辨的MRI体积。对数量不断增加的时间序列数据进行有效而精确的处理,对于每位数据科学家都至关重要。介绍了RapidAligner –一个CUDA加速库,可使用以下三种流行的锁定步骤对统一采样的本地对齐方式,在一个非常长的时间序列流(主题)中,对齐一个短时间序列片段(查询)。时间序列:滚

2021-04-30 12:13:30 47 3

原创 NVIDIA深度架构

NVIDIA深度架构本文介绍A100 GPU,NVIDIA Ampere架构GPU的重要新功能。现代云数据中心中运行的计算密集型应用程序的多样性推动了NVIDIA GPU加速的云计算的爆炸式增长。此类密集型应用程序包括AI深度学习(DL)训练和推理,数据分析,科学计算,基因组学,边缘视频分析和5G服务,图形渲染,云游戏等。从扩展的AI训练和科学计算,到扩展的推理应用程序,再到支持实时对话式AI,NVIDIA GPU提供了必要的功能,加速当今云数据中心中运行的众多复杂且不可预测的工作负载。NVIDIA

2021-04-30 11:27:43 43 2

原创 视觉智能400平台

视觉智能400平台基于Qualcomm QCS605处理器。Qualcomm®Vision Intelligence 400平台专门用于将功能强大的视觉计算和边缘计算(用于机器学习),适配虚拟现实和运动相机应用程序。该平台具有高通公司(Qualcomm Technologies)的第一个系列芯片系统(SoC)系列,该系列芯片是专门为IoT设计的,采用先进的10纳米工艺。Vision Intelligence 400平台旨在支持出色的电源和热效率。Qualcomm Vision Intelligenc

2021-04-30 06:46:19 79

原创 Linux BSP非标准HDMI分辨率

Linux BSP非标准HDMI分辨率Intrinsyc公司发布了它的一个新的Linux BSP软件的发布 打开-Q™820 开发套件基于Linux内核版本。支持的软件功能包括HDMI输出,可以支持标准HDMI显示面板以及非标准HDMI显示面板。本文将介绍如何连接并与Intrinsyc公司的使用配置各种HDMI面板打开-Q™820 的Linux BSP。HDMI (高清晰度多媒体接口)是一个 小号TANDARD使用d到携带高质量的音频数据和高清晰度的消费类电子产品的视频格式。开放-Q™820从Intr

2021-04-30 06:18:44 22

原创 物联网安全Wi-Fi漫游

物联网安全Wi-Fi漫游根据Statistica的最新报告,到2021年,全球正在使用的Wi-Fi®连接设备的数量预计将增长到222亿。这种Wi-Fi的广泛使用不仅包括消费者的Wi-Fi使用,而且还包括工业物联网(IIoT)中的Wi-Fi使用情况。事实上,根据其2019年超越概念证明:扩展工业物联网 报告,全球管理咨询公司贝恩公司(Bain&Company)预测,到2021年,物联网将增长到200B美元的市场。贝恩报告援引IIoT中Wi-Fi的主要采用障碍是实施风险,包括技术专长和集成,包括系统和数据过

2021-04-30 05:44:46 117

原创 梯度下降优化算法

梯度下降优化算法梯度下降是常用的优化方式,具体的算法有:• 梯度下降法o 批梯度下降(Batch Gradient Descent, BGD)o 随机梯度下降(Stochastic Gradient Decent, SGD)o 小批量梯度下降(Mini-Batch Gradient Decent, MBGD)• 梯度下降优化o 动量梯度下降(Gradient Descent with Momentum)o 均方根支(Root Mean Square Prop, RMSprop)o 自适应矩

2021-04-29 06:28:48 117 2

原创 SLAM图优化g2o

SLAM图优化g2o图优化g2o框架图优化的英文是 graph optimization 或者 graph-based optimization, “图”其实是数据结构中的graph。凸优化的英文是 convex optimization,这里的“凸”其实是凸函数的意思,所以单从英文就能区分开。图优化有什么优势?SLAM的后端一般分为两种处理方法,一种是以扩展卡尔曼滤波(EKF)为代表的滤波方法,一种是以图优化为代表的非线性优化方法。SLAM研究的主流热点几乎都是基于图优化。滤波方法尤其是EKF方

2021-04-29 06:12:04 96

原创 AI人工智能天机芯芯片

AI人工智能天机芯芯片描述2019年刊出的《自然》封面文章,展示了清华大学类脑计算研究中心团队研发的新型人工智能芯片“天机芯(Tianjic)”。这是世界首款异构融合类脑芯片,实现了中国在芯片和人工智能两大领域《自然》论文的零突破。中国造的“天机芯”作为世界首款异构融合类脑芯片,究竟有何突破?芯片是人工智能系统的“大脑”。现有人工智能技术(AI)存在两种主流“大脑”:一种是支持人工神经网络的深度学习加速器,基于研究“电脑”的计算机科学,让计算机运行机器学习算法;另一种是支持脉冲神经网络的神经形态芯片

2021-04-28 06:10:15 108

原创 Tengine MLOps概述

Tengine MLOps概述大幅提高产业应用从云向边缘迁移的效率MLOps Cloud Native 聚焦于提升云端的运营过程效率MLOps Edge Native 聚焦于解决边缘应用开发及异构部署效率核心价值专为AIoT场景设计,同时具有跨芯片平台、异构调度、芯片底层加速、超轻量无依赖、完整开发移植部署工具链几大特点。Tengine兼容多种操作系统和深度学习算法框架。简化和加速面向场景的AI算法在嵌入式边缘设备上快速迁移,以及实际应用部署落地。...

2021-04-27 05:57:35 135

原创 Tengine Framework基础

Tengine Framework基础最受开发者喜爱的边缘AI计算框架Tengine是OPEN AI LAB推出的自主知识产权的边缘AI计算框架,致力于解决AIoT产业链碎片化问题,加速AI产业化落地。Tengine兼容多种操作系统和深度学习算法框架,简化和加速面向场景的AI算法在嵌入式边缘设备上快速迁移,以及实际应用部署落地,可以十倍提升基础开发的效率。Tengine于2017年在GitHub( https://github.com/OAID/Tengine )开源。一方面可以通过异构计算技术同

2021-04-27 05:46:31 134

原创 Tengine Web服务器概述

Tengine Web服务器概述Tengine是由淘宝网发起的Web服务器项目。在Nginx的基础上,针对大访问量网站的需求,添加了很多高级功能和特性。目的是打造一个高效、安全的Web平台。发展Tengine的性能和稳定性已经在大型的网站如淘宝网,天猫商城等得到了很好的检验。最终目标是打造一个高效、稳定、安全、易用的Web平台。从2011年12月开始,Tengine成为一个开源项目。由Tengine团队开发和维护。Tengine团队的核心成员来自于淘宝、搜狗等互联网企业。功能以下沿引项目主页

2021-04-27 05:34:14 115

原创 华为MDC软件架构

华为MDC软件架构平台软件零层逻辑架构如下图,由基础层、功能层、应用层和服务层组成。零层逻辑架构从平台软件一层逻辑架构可以看出,MDC用了华为自研的越影操作系统、兼容Autosar标准的软件中间件,提供完整的工具链,并且考虑了功能安全和信息安全。一层逻辑架构在2019年第四季度,MDC使用基于鲲鹏920s和升腾310硬件的第一代软件架构。MCU软件用于诊断和健康监控等,鲲鹏920软件分为自动驾驶功能域和数据处理域,感知软件则放在了具备AI超强功能的升腾310。第一代版本软件部署架构示意图

2021-04-26 06:22:44 79

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除