自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

吴建明wujianming_110117

吴建明专业博客wujianming_110117

  • 博客(192)
  • 问答 (8)
  • 收藏
  • 关注

原创 多目标姿态估计

多目标姿态估计一个openpose的姿态估计算法,这个算法可以检测人体的18个关节点。安装OpenPose这个是来自卡内基梅隆的开源算法,算法真的很鲁棒,不信来看看效果。openpose这个算法集成Convolutional Pose Machines、Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields 和 Hand Keypoint Detection in Single Images 这三篇paper的研究。

2020-05-31 21:18:26 147

原创 数据标注的困境

数据标注的困境众所周知,机器学习主要分为两类:监督学习(supervised learning)与无监督学习(unsupervisedlearning)。而监督学习离不开数据标注(data labeling),也就是依靠人工 找到groundtruth。标注平台标注平台这今年开年如雨后春笋般都纷纷出现在公众视野,表现形式最直接的就是百度搜索的时候明显增多了而且有很多用了百度的竞价排名,其中不乏一些大厂的内部平台对外运营了,也有一些标注公司自己做的标注平台。服务外包公司这类公司目前是最多的了,同时

2020-05-31 20:28:45 549

原创 如何部署自动驾驶系统

如何部署自动驾驶系统自动驾驶软件部署方法、装置、终端及服务器,更具体的涉及一种自动驾驶车辆行驶途中下一地理位置区域所调用的自动驾驶软件部署方法、装置、终端及服务器。背景技术随着城市化建设带来的人口高度集中和交通产业的不断发展,社会对智能交通系统如何提供更加便捷、高效和人性化的服务,提出了越来越高的需求。自动驾驶是当前智能交通的重要发展方向,它作为一项新技术,是汽车行业当前的热点。自动驾驶车辆又称无人驾驶车辆、智能驾驶车辆、电脑驾驶车辆或轮式移动机器人,是一种通过电脑系统实现无人驾驶的智能汽车。这次要做的

2020-05-31 17:45:58 145

原创 AI全景分割布局养猪场!

AI全景分割布局养猪场!论文链接:https://arxiv.org/pdf/2005.10499.pdf摘要如果使用自动识别系统,猪的行为研究可以大大简化。特别是基于计算机视觉的系统,其优点是可以在不影响动物正常行为的情况下进行评估。近年来,基于深度学习的方法被引入,并取得了令人愉快的效果。特别是目标和关键点检测器已经被用来检测个体动物。尽管取得了很好的效果,但边界框和稀疏的关键点并不能追踪动物的轮廓,导致大量信息丢失。因此,这项工作遵循了全景分割的相对新定义,旨在对单个猪进行像素精确分割。为此,提

2020-05-31 17:00:00 135

原创 IoU、GIoU、DIoU、CIoU损失函数

IoU、GIoU、DIoU、CIoU损失函数目标检测任务的损失函数由ClassificitionLoss和Bounding Box Regeression Loss两部分构成。目标检测任务中近几年来Bounding Box Regression Loss Function的演进过程,其演进路线是一、IOU(Intersection over Union)特性(优点)IoU就是我们所说的交并比,是目标检测中最常用的指标,在anchor-based的方法。作用不仅用来确定正样本和负样本,还可以用

2020-05-31 16:03:39 882

原创 台积电技术研发实力

台积电技术研发实力台积电在半导体行业的地位毋庸置疑。他们究竟有多强大,大部分读者了解得可能非常片面。从最新公布的2019年财报里,看看台积电的真正实力。一、台积电在市场上的地位根据公司财报,台积公司在先进制程技术、特殊制程技术,以及先进封装技术的发展上持续领先全球集成电路制造服务领域,2019年的市场占有率为52%。台积公司总体营收以地区划分(主要依据客户营运总部所在地),来自北美市场的营收占台积公司总体营收的60%、日本与中国大陆以外的亚太市场占9%、中国大陆市场占20%、欧洲、中东及非洲市场占6

2020-05-31 14:13:23 449

原创 YOLOv4没交棒,但YOLOv5来了!

YOLOv4没交棒,但YOLOv5来了!前言4月24日,YOLOv4来了!5月30日,"YOLOv5"来了!这里的 “YOLOv5” 是带有引号的,因为 Amusi 认为网上刚出来的这个版本并称不上YOLOv5。这也是为什么标题为:大神没交棒,但YOLOv5来了!YOLO原项目darknet(官方)截止2020年5月31日,并没有更新添加这个"YOLOv5"的链接。最新的一次update还是上个月YOLOv4重磅出炉的那次,官方正式添加了YOLOv4项目链接。关于YOLOv4,Amusi 认为那

2020-05-31 13:32:32 748

原创 全卷积实例分割实战

全卷积实例分割实战Fully Convolutional Instance-aware SemanticSegmentation介绍FCIS是一个完全卷积的端到端解决方案,例如分割,它赢得了2016年COCO分割挑战赛的第一名。FCIS最初在CVPR 2017聚光灯文件中进行了描述。值得注意的是: FCIS提供了一个简单、快速、准确的实例分割框架。与MNC不同,FCIS同时联合进行实例掩码估计和分类,并估计类特定的掩码。没有利用掩模RCNN系统中的各种技术和技巧,例如增加R

2020-05-31 12:44:10 285

原创 NeuWare软件开发环境

NeuWare软件开发环境NeuWare全面支持各类主流编程框架(如TensorFlow, Caffe, Caffe2, MXNet和ONNX等)。用户可面向上述编程框架,便捷地在MLU100上开发和部署深度学习应用。同时,NeuWare提供了完整的运行时系统和驱动软件,方便系统快速集成。NeuWare还提供了包括应用开发、功能调试、性能调优等在内的一系列工具。其中应用开发工具包括机器学习库、运行时库、编译器、模型重训练工具和特定领域(如视频分析领域)SDK等;功能调试工具可以满足编程框架、函数库等不

2020-05-31 07:20:58 119

原创 人体姿态估计

人体姿态估计人体姿态估计(HumanPose Detection)是计算机视觉中的一个重要分支,应用范围宽广,比如在自动驾驶行业进行街景中行人的姿态检测、动作预测;在安防领域的行人再识别问题,特殊场景的特定动作监控;影视产业的电影特效等。Openpose是卡内基梅隆大学提出的一种人体姿态检测模型,在github上有比较完整的实现Openpose on github。它是第一个基于深度学习的实时多人2D姿态估计方法,模型效果很好,鲁棒性较高,但网络较深,算法复杂度很高。Openpose提供了开源的caf

2020-05-31 06:47:45 81

原创 Pytorch和CNN图像分类

Pytorch和CNN图像分类PyTorch是一个基于Torch的Python开源机器学习库,用于自然语言处理等应用程序。它主要由Facebookd的人工智能小组开发,不仅能够实现强大的GPU加速,同时还支持动态神经网络,这一点是现在很多主流框架如TensorFlow都不支持的。 PyTorch提供了两个高级功能:1.具有强大的GPU加速的张量计算(如Numpy)2.包含自动求导系统的深度神经网络。除了Facebook之外,Twitter、GMU和Salesforce等机构都采用了PyTorch。本

2020-05-31 06:28:58 795

原创 3D点云深度学习

3D点云深度学习在自动驾驶中关于三维点云的深度学习方法应用、三维场景语义理解的方法以及对应的关键技术介绍。数据但是对于3D点云,数据正在迅速增长。大有从2D向3D发展的趋势,比如在opencv中就已经慢慢包含了3D点云的处理的相关模块,在数据方面点云的获取也是有多种渠道, 无论是源于CAD模型还是来自LiDAR传感器或RGBD相机的扫描点云,无处不在。 另外,大多数系统直接获取3D点云而不是拍摄图像并进行处理。因此,在深度学习大火的年代,应该如何应用这些令人惊叹的深度学习工具,在3D点云上的处理上

2020-05-31 05:56:17 652

原创 TensorFlow基础剖析

TensorFlow基础剖析一.概述TensorFlow 是一个使用数据流图 (Dataflow Graph) 表达数值计算的开源软件库。它使用节点表示抽象的数学计算,并使用 OP 表达计算的逻辑;而边表示节点间传递的数据流,并使用 Tensor 表达数据的表示。数据流图是一种有向无环图 (DAG),当图中的 OP 按照特定的拓扑排序依次被执行时,Tensor 在图中流动形成数据流,TensorFlow 因此而得名。在分布式运行时,数据流图的被分裂为多个子图,并被有效地部署到集群中的多个机器上并发

2020-05-30 21:34:58 370

原创 Caffe框架GPU与MLU计算结果不一致请问如何调试?

Caffe框架GPU与MLU计算结果不一致请问如何调试?某一检测模型移植到CambriconCaffe上时,发现无法检测出结果,于是将GPU和MLU的运行结果输出并保存后进行对比,发现二者计算结果不一致,如下图所示:第一张为GPU模式下,第二张为GPU模式,二者使用的输入和数据预处理方式均完全一样,该输出为网络第一层卷积的部分输出。用CambriconCaffe提供的test_forward工具验证该模型在CPU和MLU模式下的输入,结果仍不一致,如下图所示:第一张为MLU模式下的输出,

2020-05-30 20:27:21 317

原创 YOLOv5目标检测源码重磅发布了!

YOLOv5目标检测源码重磅发布了!https://github.com/ultralytics/yolov5该存储库代表了对未来对象检测方法的超解析开源研究,并结合了在使用之前的YOLO存储库在自定义客户机数据集上训练数千个模型时所吸取的经验教训和改进的最佳实践https://github.com/ultralytics/yolov3。所有代码和模型都在积极开发中,可能会被修改或删除,恕不另行通知。使用风险自负。更新:2020年5月27日:公开发布。yolov3 spp(发布协议)是所有已知yol

2020-05-30 19:44:39 2074

原创 NVIDIA深度学习Tensor Core性能解析(下)

NVIDIA深度学习Tensor Core性能解析(下)DeepBench推理测试之RNN和Sparse GEMMDeepBench的最后一项推理测试是RNN和Sparse GEMM,虽然测试中可以选择FP16,但实际上它们都只支持FP32运算。虽然RNN可能会有加速,但DeepBench和NVIDIA目前仅支持单精度RNN推理。NVIDIA Caffe2测试之ResNet50和ImageNet虽然内核和深度学习数学运算可能很有用,但实际应用中是使用真实数据集进行训练的。使用标准的I

2020-05-30 16:52:42 227

原创 NVIDIA深度学习Tensor Core性能解析(上)

NVIDIA深度学习Tensor Core性能解析(上)本篇将通过多项测试来考验Volta架构,利用各种深度学习框架来了解Tensor Core的性能。很多时候,深度学习这样的新领域会让人难以理解。从框架到模型,再到API和库,AI硬件的许多部分都是高度定制化的,因而被行业接受的公开基准测试工具很少也就不足为奇。随着ImageNet和一些衍生模型(AlexNet、VGGNet、Inception、Resnet等)的影响,ILSVRC2012(ImageNet大规模视觉识别挑战)中的图像数据集训练逐渐被行

2020-05-30 16:32:59 407

原创 Tensor Core技术解析(下)

Tensor Core技术解析(下)让FP16适用于深度学习Volta的深度学习能力是建立在利用半精度浮点(IEEE-754 FP16)而非单精度浮点(FP32)进行深度学习训练的基础之上。该能力首先由cuDNN 3支持并在Tegra X1的Maxwell架构中实现,随后原生半精度计算被引入Pascal架构并被称为“伪FP16”,即使用FP32 ALUs处理成对的FP16指令,理论上可以使每个时钟的FP16吞吐量增加一倍。这一特性实际上已经在Tensor Core处理寄存器中矩阵片段的过程中得到体现,

2020-05-30 15:55:46 213

原创 Tensor Core技术解析(上)

Tensor Core技术解析(上)NVIDIA在SIGGRAPH 2018上正式发布了新一代GPU架构——Turing(图灵),黄仁勋称Turing架构是自2006年CUDA GPU发明以来最大的飞跃。Turing架构的两大重要特性便是集成了用于光线追踪的RT Core以及用于AI计算的Tensor Core,使其成为了全球首款支持实时光线追踪的GPU。不过说到AI计算,NVIDIA GPU成为最好的加速器早已是公认的事实,但将Tensor Core印上GPU名片的并不是这次的Turing,而是他的上

2020-05-30 15:34:41 247

原创 常用深度学习框——Caffe/TensorFlow / Keras/ PyTorch/MXNet

常用深度学习框——Caffe/TensorFlow / Keras/ PyTorch/MXNet一.概述近几年来,深度学习的研究和应用的热潮持续高涨,各种开源深度学习框架层出不穷,包括TensorFlow,Keras,MXNet,PyTorch,CNTK,Theano,Caffe,DeepLearning4,Lasagne,Neon,等等。Google,Microsoft等商业巨头都加入了这场深度学习框架大战,当下最主流的框架当属TensorFlow,Keras,MXNet,PyTorch,Caffe接

2020-05-30 14:24:26 245

原创 怎样训练YOLOv3

怎样训练YOLOv3Training YOLOv3 : Deep Learning based CustomObject Detector本文将在一些公开的雪人图片和视频上分享训练过程、有助于训练的脚本和结果。可以使用相同的过程来训练具有多个目标检测。先下载代码,例如,下载地址一:https://github.com/madhawav/YOLO3-4-Py下载地址二:https://github.com/Eric3911/yolov3_darknet数据集与任何深度学习任务一样,第一个最

2020-05-30 13:14:05 300

原创 单目视觉里程计性能估计

单目视觉里程计性能估计D3VO: Deep Depth, Deep Pose and Deep Uncertaintyfor Monocular VisualOdometry论文地址:https://arxiv.org/pdf/2003.01060.pdf摘要CVPR2020一篇关于视觉里程计和深度估计结合的文章,一作是很多人熟悉的杨楠大佬。这篇文章也是继DVSO又一篇DSO与深度估计结合的文章。提出D3VO作为单目视觉里程计的新框架,该框架利用网络在三个层面的信息–深度,位姿和不确定性估计。首

2020-05-30 07:21:25 167

原创 自监督学习(Self-Supervised Learning)多篇论文解读(下)

自监督学习(Self-Supervised Learning)多篇论文解读(下)之前的研究思路主要是设计各种各样的pretext任务,比如patch相对位置预测、旋转预测、灰度图片上色、视频帧排序等等。CVPR19和ICCV19上,Google Brain的几个研究员发表了两篇论文,从另外的视角分析和研究self-supervisedlearning问题。两篇paper名字分别是:Revisiting Self-Supervised VisualRepresentation Learning (CVP

2020-05-30 06:41:10 871

原创 自监督学习(Self-Supervised Learning)多篇论文解读(上)

自监督学习(Self-Supervised Learning)多篇论文解读(上)前言Supervised deep learning由于需要大量标注信息,同时之前大量的研究已经解决了许多问题。所以近期大家的研究关注点逐渐转向了Unsupervised learning,许多顶会包括ICML, NeurIPS, CVPR, ICCV相继出现一些不错的paper和研究工作。这里主要关注Unsupervised learning一类特定的方法:Self-supervised learning(自监督学习)。

2020-05-30 06:23:28 1172

原创 服务器技术综述(四)

服务器技术综述(四)、

2020-05-29 08:24:57 44

原创 服务器技术综述(三)

服务器技术综述(三)

2020-05-29 08:08:26 78

原创 服务器技术综述(二)

服务器技术综述(二)

2020-05-29 07:05:50 75

原创 服务器技术综述(一)

服务器技术综述(一)本文对服务器的概念、服务器重要部件技术和架构组成,并且对磁盘、RAID知识,网卡等知识做了深度详细介绍。简单来说,服务器就是在网络中为其他客户机提供服务的计算机;具有高性能、高可靠、高IO数据传输能力等特点,企业从基础的邮件、打印到核心应用如ERP、数据库等业务,再到我们所熟悉的互联网业务,创新大数据服务、天气预报HPC高性能计算等都离不开大规模服务器的支持。2017年7月,Intel正式发布了代号为Purley的新一代服务器平台,包括代号为Skylake的新一代Xeon

2020-05-29 06:41:30 100

原创 TensorRT-优化-原理

TensorRT-优化-原理一.优化方式TentsorRT 优化方式:TensorRT优化方法主要有以下几种方式,最主要的是前面两种。层间融合或张量融合(Layer & Tensor Fusion)如下图左侧是GoogLeNetInception模块的计算图。这个结构中有很多层,在部署模型推理时,这每一层的运算操作都是由GPU完成的,但实际上是GPU通过启动不同的CUDA(Compute unified device architecture)核心来完成计算的,CUDA核心计算张量的速度

2020-05-28 20:05:10 215

原创 TensorRT-安装-使用

TensorRT-安装-使用一.安装这里 是英伟达提供的安装指导,如果有仔细认真看官方指导,基本上按照官方的指导肯定能安装成功。问题是肯定有很多人不愿意认真看英文指导,比如说我就是,我看那个指导都是直接找到命令行所在,直接敲命令,然后就出了很多问题,然后搜索好长时间,最后才发现,原来官方install guide里是有说明的。这里使用的是 deb 包安装的方式,以下是安装过程,我是cuda 8.0 ,cuda9.0也是类似的。进行下面三步时最好先将后面记录的遇到的问题仔细看看,然后回过头来按照 一

2020-05-28 19:42:01 234

原创 TensorRT 加速性能分析

TensorRT 加速性能分析Out-of-the-box GPU Performance模型推理性能是什么意思?在为用户评估潜在的候选项时,不测量数据库查询和预筛选(例如决策树或手动逻辑)的贡献。使用估计器对特征列进行预处理,并通过网络复制输入/结果。有两个主要推理上下文:离线推理-一次预先计算多个用户的概率在线推理-为特定用户实时推荐因此,可能有兴趣优化三个指标:吞吐量,例如用户/秒(离线)单次推理延迟(在线)满足设置的延迟约束时的吞吐量在使用TensorFlow的stock实现时的

2020-05-28 18:27:16 585

原创 GPU加速:宽深度推理

GPU加速:宽深度推理Accelerating Wide & Deep Recommender Inference on GPUs推荐系统推动了许多最流行的在线平台的参与。随着为这些系统提供动力的数据量的快速增长,数据科学家正越来越多地从更传统的机器学习方法转向高度表达的深度学习模型,以提高其建议的质量。Google的广度和深度架构已经成为解决这些问题的一种流行的模型选择,既有其对信号稀疏性的鲁棒性,也有其通过DNN线性组合分类器API在TensorFlow中的用户友好实现。虽然这些深度学习模型

2020-05-28 17:13:04 92

原创 NVIDIA TensorRT:可编程推理加速器

NVIDIA TensorRT:可编程推理加速器一.概述NVIDIA TensorRT™是一个用于高性能深度学习推理的SDK。它包括一个深度学习推理优化器和运行时间,为深度学习推理应用程序提供低延迟和高吞吐量。在推理过程中,基于TensorRT的应用程序执行速度比仅限CPU的平台快40倍。使用TensorRT,可以优化在所有主要框架中训练的神经网络模型,以高精度校准较低精度,最后部署到高规模数据中心、嵌入式或汽车产品平台。TensorRT建立在NVIDIA的并行编程模型CUDA的基础上,使能够利用C

2020-05-28 16:22:11 90

原创 端云一体人工智能开发平台整体架构

端云一体人工智能开发平台整体架构引言当前人工智能(ArtificialIntelligence)技术发展迅猛,在机器视觉、语音识别以及自然语言处理等多个技术领域取得了卓越的进展,带来了更高的精确度和泛化能力,因此越来越广泛地应用于众多行业领域,形成了智慧制造、智慧金融、智慧交通、智慧教育和智慧零售等诸多“人工智能+”的行业应用。可以预见,随着人工智能理论和技术的日益成熟,将为越来越多的行业带来更加广泛的应用和更深远的变革。人工智能自上世纪50年代诞生以来经历了多个跨越式发展阶段。其中,机器学习(

2020-05-28 09:47:38 1261

原创 人工智能开发平台

人工智能开发平台人工智能开发平台(Cambricon Neuware™)是专门针对其云、边、端的智能处理器产品打造的软件开发平台, Neuware采用端云一体的架构,可同时支持云、边、端的全系列产品。终端IP、边缘端芯片及云端芯片共享同样的软件接口和完备生态,可以方便地进行智能应用的开发,迁移和调优。在云端提供全套易用的开发调试调优工具• 开发 软件开发工具包TensorFlow/Caffe/MXNet/PyTorch/AndroidNNCNML(机器学习编程库)CNRT(高性能运行时库)

2020-05-28 09:11:25 87

原创 汽车车灯灯具系统(下)

汽车车灯灯具系统(下)发展史汽车照明的发展史大体上经过如下四个阶段:汽车灯具的演变随着汽车光源的更迭而发生。第一代汽车照明系统是由燃料(蜡烛、煤油或乙炔)直接燃烧发光。但存在发光效率很低、光强弱、性能不稳定、操作复杂等明显缺点。能满足早期车灯的要求。第二代汽车照明系统是白炽灯。1879年爱迪生发明白炽灯。汽车灯具发生了革命性的变化,1913年美国首先将白炽灯技术应用在凯迪拉克汽车前照灯上。从此汽车照明进入了电气时代。接着,先后出现汽车反光镜、启动机、发电机和蓄电池等新技术,1925年开始汽车真正进入

2020-05-28 07:52:09 100

原创 汽车车灯灯具系统(上)

汽车车灯灯具系统(上)汽车照明系统是汽车安全行驶的必备系统之一。它主要包括“外部照明灯具、内部照明灯具、外部信号灯具、内部信号灯具等。分类汽车灯具按照功能功用划分,主要有两个种类:“汽车照明灯和汽车信号灯”。汽车照明灯按照其安装的位置及功用包括:“ 前照灯、雾灯、牌照灯、仪表灯 、顶灯、工作灯”。汽车灯光信号灯又包括:“ 转向信号灯、危险报警灯、示宽灯、尾灯、制动灯 、倒车灯”。前照灯前照灯又叫前大灯,装于汽车头部两侧,用于夜间行车道路的照明。有两灯制和 四灯制之分。每辆车安装2只或4只,

2020-05-28 07:41:45 92

原创 语义和边缘:从噪声和符号中学习

语义和边缘:从噪声和符号中学习Devilis in the Edges: Learning Semantic Boundariesfrom Noisy Annotations论文地址:https://arxiv.org/pdf/1904.07934.pdf项目链接:https://nv-tlabs.github.io/STEAL/摘要解决了语义边界预测问题,它的目标是识别属于对象(类)边界的像素。注意到,相关数据集包含显著的标签噪声水平,反映了精确注释难以获得的事实,因此注释者在质量和效率之间进

2020-05-27 20:13:04 501

原创 AI解决方案:边缘计算和GPU加速平台

AI解决方案:边缘计算和GPU加速平台一.适用于边缘 AI 的解决方案AI 在边缘蓬勃发展。AI 和云原生应用程序、物联网及其数十亿的传感器以及 5G 网络现已使得在边缘大规模部署 AI 成为可能。但它需要一个可扩展的加速平台,能够实时推动决策,并让各个行业都能为行动点(商店、制造工厂、医院和智慧城市)提供自动化智能。这将人、企业和加速服务融合在一起,从而使世界变得“更小”、更紧密。适用于各行各业的边缘AI 解决方案卓越购物体验借助 AI 驱动的见解,各地的大型零售商可让客户时刻满意。大型零

2020-05-27 19:05:05 164

原创 GPU与显卡

GPU与显卡一.什么是GPU?GPU这个概念是由Nvidia公司于1999年提出的。GPU是显卡上的一块芯片,就像CPU是主板上的一块芯片。那么1999年之前显卡上就没有GPU吗?当然有,只不过那时候没有人给它命名,也没有引起人们足够的重视,发展比较慢。自Nvidia提出GPU这个概念后,GPU就进入了快速发展时期。简单来说,其经过了以下几个阶段的发展:1)仅用于图形渲染,此功能是GPU的初衷,这一点从它的名字就可以看出:Graphic Processing Unit,图形处理单元;2)后来人们发

2020-05-27 16:50:40 68

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除