自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

吴建明wujianming_110117

吴建明专业博客wujianming_110117

  • 博客(201)
  • 问答 (8)
  • 收藏
  • 关注

原创 基于区域的CNN(R-CNN)

基于区域的CNN(R-CNN)Region-based CNNs (R-CNNs)基于区域的卷积神经网络或具有CNN特征的区域(R-CNN)是一种将深度模型应用于目标检测的开创性方法。在本节中,将讨论R-CNN及其一系列改进:Fast R-CNN[Girshick,2015]、Faster R-CNN和MaskR-CNN。由于篇幅的限制,将把讨论局限于这些模型的设计上。R-CNNsR-CNN模型首先从一幅图像中选择几个建议的区域(例如,锚框是一种选择方法),然后标记类别和边界框(例如偏移量)。

2020-06-30 19:18:03 103

原创 基于Kaggle的图像分类(CIFAR-10)

基于Kaggle的图像分类(CIFAR-10)Image Classification (CIFAR-10) on Kaggle一直在使用Gluon’s data package数据包直接获得张量格式的图像数据集。然而,在实际应用中,图像数据集往往以图像文件的形式存在。将从原始图像文件开始,逐步组织、读取并将文件转换为张量格式。对CIFAR-10数据集进行了一个实验。这是计算机视觉领域的一个重要数据集。现在,将应用前面几节中所学的知识来参加Kaggle竞赛,该竞赛解决CIFAR-10图像分类问题。比赛

2020-06-30 17:51:10 222

原创 Single Shot Multibox Detection (SSD)实战(下)

Single Shot Multibox Detection (SSD)实战(下)Training将逐步解释如何训练SSD模型进行目标检测。2.1. DataReading and Initialization创建的Pikachu数据集。batch_size = 32train_iter, _ = d2l.load_data_pikachu(batch_size)Pikachu数据集中有1个类别。在定义模块之后,我们需要初始化模型参数并定义优化算法。ctx, net = d2l.try

2020-06-30 16:08:04 3613 1

原创 Single Shot Multibox Detection (SSD)实战(上)

Single Shot Multibox Detection (SSD)实战(上)介绍了边界框、锚框、多尺度对象检测和数据集。现在,我们将利用这些背景知识构建一个目标检测模型:单次多盒检测(SSD)。这种快速简便的模式已经被广泛应用。该模型的一些设计思想和实现细节也适用于其他对象检测模型。Model图1显示了一个SSD模型的设计。该模型的主要组成部分是一个基本网络块和若干个串联的多尺度特征块。在这里,基网络块用于提取原始图像的特征,一般采用深度卷积神经网络的形式。关于SSDs的论文选择在分类层之前

2020-06-30 14:06:04 6827 1

原创 Anchor Boxes示例实战

Anchor Boxes示例实战目标检测算法通常对输入图像中的大量区域进行采样,判断这些区域是否包含感兴趣的目标,并调整这些区域的边缘,以便更准确地预测目标的真实边界框。不同的模型可能使用不同的区域采样方法。在这里,我们介绍一种这样的方法:它生成多个大小和纵横比不同的边框,同时以每个像素为中心。这些边界框称为锚框。我们将练习基于锚盒的对象检测。首先,导入此部分所需的包或模块。在这里,我们修改了NumPy的打印精度。因为打印张量实际上调用了NumPy的print函数,所以本节打印的张量中的浮点数更简洁。

2020-06-30 13:03:28 145

原创 全卷积网络Fully Convolutional Networks (FCN)实战

全卷积网络Fully Convolutional Networks (FCN)实战使用图像中的每个像素进行类别预测的语义分割。全卷积网络(FCN)使用卷积神经网络将图像像素转换为像素类别。与之前介绍的卷积神经网络不同,FCN通过转置卷积层将中间层特征映射的高度和宽度转换回输入图像的大小,使得预测结果在空间维度(高度和宽度)与输入图像一一对应。给定空间维度上的位置,信道维度的输出将是对应于该位置的像素的类别预测。将首先导入实验所需的包或模块,然后解释转置卷积层。%matplotlib inlinefr

2020-06-30 11:09:48 285

原创 目标检测数据集The Object Detection Dataset

目标检测数据集The Object Detection Dataset在目标检测领域,没有像MNIST或Fashion MNIST这样的小数据集。为了快速测试模型,我们将组装一个小数据集。首先,我们使用一个开源的3D Pikachu模型生成1000张不同角度和大小的Pikachu图像。然后,我们收集一系列背景图像,并在每个图像上随机放置一个Pikachu图像。我们使用MXNet提供的im2rec工具将图像转换为二进制RecordIO格式[1]。这种格式可以减少数据集在磁盘上的存储开销,提高读取效率。如果您

2020-06-30 10:27:33 545

原创 多尺度目标检测 Multiscale Object Detection

多尺度目标检测 Multiscale Object Detection我们在输入图像的每个像素上生成多个锚框。这些定位框用于对输入图像的不同区域进行采样。但是,如果锚定框是以图像的每个像素为中心生成的,很快就会有太多的锚框供我们计算。例如,我们假设输入图像的高度和宽度分别为561和728像素。如果以每个像素为中心生成五个不同形状的锚框,则超过两百万个锚框(561×728×5)需要在图像上进行预测和标记。减少锚箱数量并不困难。一种简单的方法是对输入图像中的一小部分像素进行均匀采样,并生成以采样像素为中心的

2020-06-30 10:01:50 4141 2

原创 Fine-Tuning微调原理

Fine-Tuning微调原理如何在只有60000张图片的Fashion-MNIST训练数据集中训练模型。ImageNet,这是学术界使用最广泛的大型图像数据集,它拥有1000多万幅图像和1000多个类别的对象。然而,我们经常处理的数据集的大小通常比第一个大,但比第二个小。假设我们想在图像中识别不同种类的椅子,然后将购买链接推给用户。一种可行的方法是先找到一百张常见的椅子,每把椅子取一千张不同角度的图像,然后在采集到的图像数据集上训练分类模型。虽然这个数据集可能比时尚MNIST大,但是示例的数量仍然不到

2020-06-30 09:04:19 260

原创 转置卷积Transposed Convolution

转置卷积Transposed Convolution我们为卷积神经网络引入的层,包括卷积层和池层,通常会减小输入的宽度和高度,或者保持不变。然而,语义分割和生成对抗网络等应用程序需要预测每个像素的值,因此需要增加输入宽度和高度。转置卷积,也称为分步卷积或反卷积,就是为了达到这一目的。from mxnet import np, npx, initfrom mxnet.gluon import nnfrom d2l import mxnet as d2lnpx.set_np()Basic 2D T

2020-06-30 08:18:32 140

原创 语义分割与数据集

语义分割与数据集Semantic Segmentation and the Dataset在目标检测问题中,我们只使用矩形边界框来标记和预测图像中的对象。在这一节中,我们将对不同的语义区域进行语义分割。这些语义区域在像素级标记和预测对象。图1显示了一个语义分割的图像,区域标记为“dog”、“cat”和“background”。如您所见,与目标检测相比,语义分割使用像素级边界标记区域,以获得更高的精度。Fig. 1. Semantically-segmented image, with areas l

2020-06-29 19:48:04 205

原创 深度学习Anchor Boxes原理与实战技术

深度学习Anchor Boxes原理与实战技术目标检测算法通常对输入图像中的大量区域进行采样,判断这些区域是否包含感兴趣的目标,并调整这些区域的边缘,以便更准确地预测目标的地面真实边界框。不同的模型可能使用不同的区域采样方法。在这里,我们介绍一种这样的方法:它生成多个大小和纵横比不同的边框,同时以每个像素为中心。这些边界框称为锚框。我们将在下面几节中练习基于锚盒的对象检测。首先,导入本文所需的包或模块。在这里,我们修改了NumPy的打印精度。因为打印张量实际上调用了NumPy的print函数,所以本文打

2020-06-29 19:14:34 210

原创 CVPR2020:4D点云语义分割网络(SpSequenceNet)

CVPR2020:4D点云语义分割网络(SpSequenceNet)SpSequenceNet: Semantic Segmentation Network on 4D Point Clouds论文地址:https://openaccess.thecvf.com/content_CVPR_2020/papers/Shi_SpSequenceNet_Semantic_Segmentation_Network_on_4D_Point_Clouds_CVPR_2020_paper.pdf摘要点云在许多应

2020-06-29 18:01:45 432

原创 CVPR2020:利用图像投票增强点云中的三维目标检测(ImVoteNet)

CVPR2020:利用图像投票增强点云中的三维目标检测(ImVoteNet)ImVoteNet: Boosting 3D Object Detection in Point Clouds With Image Votes论文地址:https://openaccess.thecvf.com/content_CVPR_2020/papers/Qi_ImVoteNet_Boosting_3D_Object_Detection_in_Point_Clouds_With_Image_CVPR_2020_pape

2020-06-29 15:42:53 487

原创 CVPR2020:点云弱监督三维语义分割的多路径区域挖掘

CVPR2020:点云弱监督三维语义分割的多路径区域挖掘Multi-Path Region Mining for Weakly Supervised 3D Semantic Segmentation on Point Clouds论文地址:https://openaccess.thecvf.com/content_CVPR_2020/papers/Wei_Multi-Path_Region_Mining_for_Weakly_Supervised_3D_Semantic_Segmentation_on

2020-06-29 14:00:47 4699 1

原创 CVPR2020:基于层次折叠的跳跃式注意网络点云完成

CVPR2020:基于层次折叠的跳跃式注意网络点云完成Point Cloud Completion by Skip-Attention Network With Hierarchical Folding论文地址:https://openaccess.thecvf.com/content_CVPR_2020/papers/Wen_Point_Cloud_Completion_by_Skip-Attention_Network_With_Hierarchical_Folding_CVPR_2020_pap

2020-06-29 13:04:53 406

原创 CVPR2020:端到端学习三维点云的局部多视图描述符

CVPR2020:端到端学习三维点云的局部多视图描述符End-to-End Learning Local Multi-View Descriptors for 3D Point Clouds论文地址:https://openaccess.thecvf.com/content_CVPR_2020/papers/Li_End-to-End_Learning_Local_MultiView_Descriptors_for_3D_Point_Clouds_CVPR_2020_paper.pdf摘要在这项工

2020-06-29 11:00:41 357

原创 CVPR2020:点云分析中三维图形卷积网络中可变形核的学习

CVPR2020:点云分析中三维图形卷积网络中可变形核的学习Convolution in the Cloud: Learning Deformable Kernels in 3D Graph Convolution Networks for Point Cloud Analysis论文地址:https://openaccess.thecvf.com/content_CVPR_2020/papers/Lin_Convolution_in_the_Cloud_Learning_Deformable_Ker

2020-06-29 09:48:20 456

原创 CVPR2020:训练多视图三维点云配准

CVPR2020:训练多视图三维点云配准Learning Multiview 3D Point Cloud Registration源代码和预训练模型:https://github.com/zgojcic/3D_multiview_reg论文地址:https://openaccess.thecvf.com/content_CVPR_2020/papers/Gojcic_Learning_Multiview_3D_Point_Cloud_Registration_CVPR_2020_paper.pdf

2020-06-29 08:31:01 527

原创 CVPR2020:扩展架构以实现高效的视频识别(X3D)

CVPR2020:扩展架构以实现高效的视频识别(X3D)X3D: Expanding Architectures for Efficient Video Recognition论文地址:https://openaccess.thecvf.com/content_CVPR_2020/html/Feichtenhofer_X3D_Expanding_Architectures_for_Efficient_Video_Recognition_CVPR_2020_paper.html代码位于:https:/

2020-06-29 06:59:26 282

原创 CVPR2020:三维实例分割与目标检测

CVPR2020:三维实例分割与目标检测Joint 3D Instance Segmentation and Object Detection for Autonomous Driving论文地址:http://openaccess.thecvf.com/content_CVPR_2020/papers/Zhou_Joint_3D_Instance_Segmentation_and_Object_Detection_for_Autonomous_Driving_CVPR_2020_paper.pdf

2020-06-28 19:44:30 314

原创 视觉导航的神经拓扑SLAM

视觉导航的神经拓扑SLAMNeural Topological SLAM for Visual Navigation论文地址:http://openaccess.thecvf.com/content_CVPR_2020/papers/Chaplot_Neural_Topological_SLAM_for_Visual_Navigation_CVPR_2020_paper.pdfProject webpage:https://devendrachaplot.github.io/projects/Ne

2020-06-28 18:41:41 244

原创 使用现代C++如何避免bugs(下)

使用现代C++如何避免bugs(下)About virtual functionsVirtual functions hinder a potential problem: the thing is that it’s very simple to make an error in signature of the derived class and as result not to override a function, but to declare a new one. Let’s take a l

2020-06-27 16:50:44 223

原创 使用现代C++如何避免bugs(上)

使用现代C++如何避免bugs(上)How to avoid bugs using modern C++C++的主要问题之一是拥有大量的构造,它们的行为是未定义的,或者程序员只是意想不到的。在各种项目中使用静态分析器时,我们经常会遇到这些问题。但是,众所周知,最好的方法是在编译阶段检测错误。让我们看看现代C++中的哪些技术不仅帮助编写简单明了的代码,而且使它更安全、更可靠。什么是现代C++?在C++ 11发布后,现代C++这个术语变得非常流行。这是什么意思?首先,现代C++是一组模式和习语,旨在消除

2020-06-27 16:08:21 191

原创 蓝牙mesh网络技术的亮点

蓝牙mesh网络技术的亮点The highlights of Bluetooth mesh networking technology导言蓝牙是当今最主要的低功耗无线技术之一,对无线设备用户和开发人员非常熟悉。蓝牙网络类型仅限于两个设备(信标或单个集线器)和几个只能与该集线器(星型网络)通信的卫星设备之间的双向通信。尽管beaconing是一种基于一对多广播的技术,用于感兴趣的信息传送室内定位、资产跟踪和双向通信,为蓝牙物联网的使用创造了许多可能性,但最新的蓝牙更新已经发展到下一代网络架构。蓝牙低能耗

2020-06-27 10:45:40 158

原创 电路功能和优点

电路功能和优点Circuit Function & Benefits可编程逻辑控制器(PLC)和分布式控制系统(DCS)用于监测和控制工业自动化应用中的智能(支持HART)和模拟现场仪表。图1所示的电路是一个简单的DCS系统,由一个主机和一个节点组成,其中有两个4通道隔离模拟输入板和两个4通道隔离模拟输出板,由一个Arduino形状因子基板本地控制。RS-485收发器与PC机或其他主机接口,用户可从中使用Modbus协议与节点交换数据。图1. PLC(或单节点DCS)Modbus系统功能框

2020-06-27 09:42:46 225

原创 ARM的突破:超级计算机和Mac

ARM的突破:超级计算机和MacArm度过了一个非常愉快的星期。一台世界上最快的超级计算机首次亮相,世界上最快的超级计算机首次使用基于Arm的处理器。似乎这还不足以吹嘘,苹果宣布了其Mac产品的新芯片;这些芯片也将基于Arm,Arm将取代英特尔。我们将与蒂里亚斯研究分析师KEVIN KREWELL讨论这一切的意义。BRIAN SANTO:《纽约时报》主编。Arm周一:超级计算机和Mac1993年,一群研究人员列出了世界上最快的超级计算机。最终,他们开始发布这个榜单,现在通常被称为500强。最新的前

2020-06-27 08:35:03 280

原创 所有处理都走向AI

所有处理都走向AIAll Processing Bends Toward AI旧金山——谷歌正在试验机器学习(ML)来执行集成电路设计中的位置和路径,并取得了很好的效果。上周在ISSCC会议上宣布的这一发现,对人工智能(AI)和电路设计同样重要。多年来,人工智能一直是电子行业中规模最大的东西,吸引了大量的半导体研究(连同风险投资和头条新闻)。认识到这一点,今年的集成固态电路会议(ISSCC)的主题是“为人工智能时代提供动力的集成电路”,开幕全体会议的目的是绘制人工智能引领半导体空间的程度。赞助:智能

2020-06-27 07:31:05 65

原创 Wide-Bandgap宽禁带(WBG)器件(如GaN和SiC)市场将何去何从?

Wide-Bandgap宽禁带(WBG)器件(如GaN和SiC)市场将何去何从?Where Is the Wide-Bandgap Market Going?电力电子在采用宽禁带(WBG)器件(如GaN和SiC)方面有了一个有趣的转变。虽然硅仍然主导着市场,但GaN和SiC器件的出现将很快引导技术朝着新的、更高效的解决方案发展。Yole Dédeveloppement(Yole)估计,到2025年,SiC器件的收入将占市场的10%以上,而GaN器件的收入到2025年将占市场的2%以上。碳化硅功率器件的

2020-06-27 06:36:41 401

原创 功率半导体碳化硅(SiC)技术

功率半导体碳化硅(SiC)技术Silicon Carbide Adoption Enters Next Phase碳化硅(SiC)技术的需求继续增长,这种技术可以最大限度地提高当今电力系统的效率,同时降低其尺寸、重量和成本。但碳化硅溶液并不是硅的替代品,它们也并非都是一样的。为了实现碳化硅技术的承诺,开发人员必须仔细评估基于质量、供应和支持的产品和供应商选项,并且他们必须了解如何优化将这些破坏性碳化硅电源组件集成到其最终系统中。对功率半导体器件的需求日益增长,推动了宽带隙半导体市场的发展。主要参与者一

2020-06-27 06:07:51 365 1

原创 Battery electric vehicles (BEVs) 快充技术

Battery electric vehicles (BEVs) 快充技术BEVs: Not If, But When and How Fast电池电动汽车(bev)已经开始走上一条陡峭的部署增长曲线,这将对汽车和交通行业产生重大影响,但还需要时间来发挥作用。一个多世纪以来,内燃机车(ICEV)一直在汽车行业占据主导地位,并将在未来十年或二十年内保持领先地位。在本专栏和下一篇文章中,我将为您提供一些关于这两种技术及其所需基础设施的市场竞争的观点,第一部分是关于这两种技术及其所需基础设施的总体情况,第二部

2020-06-27 05:48:18 183

原创 短波红外(SWIR)相机camera

短波红外(SWIR)相机cameraAVs Can’t Drive Everywhere. Can TriEye’s SWIR Camera Help?TriEye的短波红外(SWIR)摄像机能否突破目前自动车辆(AVs)的地理围栏操作?汽车可以去任何地方,在所有天气或道路条件下,是AV行业的梦想成真。这就是今天的驾车者所能做的,或多或少。然而,现在,在可预见的未来,没有一家影音公司能保证这样的“通用”业务。AVs的使用仍然受到限制。例如,机器人出租车只能在地理围栏区域内运行。他们面临一个渐进的推出

2020-06-27 05:26:18 303

原创 多核片上系统(SoC)架构的嵌入式DSP软件设计

多核片上系统(SoC)架构的嵌入式DSP软件设计Multicore a System-on-a-Chip (SoC) ArchitectureSoCs的软件开发涉及到基于最强大的计算模型在各种处理单元之间划分应用程序。这可能需要大量的试用anderror来建立正确的分区。在高层次上,SoCpartitioning算法如下:将状态机软件(那些提供应用程序控制、排序、用户界面控制、事件驱动软件等的算法)放在一个RISCprocessor上,如ARM。将信号处理软件放在DSP上,利用DSP为信号处理功能提

2020-06-26 15:16:39 92

原创 工业4.0是个白日梦吗?

工业4.0是个白日梦吗?Is Industry 4.0 a Pipe Dream?尽管全球对工业4.0大肆宣传,但这一现象基本上仍停留在理论层面。几年来,贸易媒体一直充斥着关于工业4.0的文章,但这个概念是从何而来的呢?早在2011年,Henning Kagermann博士、Wolfgang Wahlster博士和Wolf Dieter Lukas博士就向汉诺威展会的参观者介绍了工业4.0。在贸易展上,他们描述了他们的愿景,即投资于智能技术,在德国汽车和机械工程领域取得成功的基础上再接再厉。今天,关

2020-06-26 14:05:04 106

原创 电子设计搜索引擎引入分析和见解

电子设计搜索引擎引入分析和见解Electronics Design Search Engine Introduces Analytics and Insights2020年上半年最受欢迎的组件是什么?根据电子设计搜索引擎SnapEDA的说法,是espresif Systems ESP32微控制器,它集成了WiFi和蓝牙,今年迄今为止在其网站上的下载量超过6000次。这些数据和其他数据是其为组件供应商推出的新SnapInsights分析服务的一部分。2020年上半年前20名下载量SnapEDA Na

2020-06-26 13:47:21 130

原创 DMS是临时解决方案?

DMS是临时解决方案?Who Says DMS Is an Interim Solution?现在是认真对待DMS驱动程序监控系统的时候了。特斯拉(Tesla)在台湾高速公路上撞上翻倒卡车的镜头,似乎自6月初发生以来,就一直出现在每一份汽车出版物上。看了这段视频,我想到了三个想法:为什么自动紧急制动没有启动?司机在干什么?为什么还有人相信,在短短几年内,民营乘用车将“自动驾驶”?在我从事汽车电子行业20年的经历中,最不寻常的一点是,有多少人完全不使用驾驶员监控系统(DMS),尽管欧洲NCAP(

2020-06-26 12:55:15 232

原创 条纹相机的脉冲信号

条纹相机的脉冲信号扫描电极之间的红点表示。不同到达时间的加速光电子。上面的比下面的来得早一个。扫描电压以条纹模式施加在扫描电极上,而不扫描在聚焦模式下施加电压。条纹相机的特征。(a)光电阴极量子效率的测量在没有输入光学元件的条纹管中。橙色和红色代表带宽,分别用于SR-FLIM和70 Tfps主动成像。(b)空间电荷感应像在不同的入射光强度下传播。扩散表示为传感器像素数。插图:在四个选定灯光下,条纹相机在聚焦模式下拍摄的二维图像强度。(c)条纹相机的响应曲线。活动尖照明区超短光脉冲的特

2020-06-26 12:21:34 178

原创 每秒能捕捉万亿帧的相机

每秒能捕捉万亿帧的相机Can your camera capture trillions of frames per second? This one can.“快是好的,但越快越好”是一个指导方针,适用于我们试图检测的许多操作。以频闪式胶卷相机摄影的发展为例,这种相机的闪光灯最短可达十万分之一秒,主要是由麻省理工学院教授哈罗德·埃德格顿(Harold“Doc”Edgerton)在20世纪30年代开始在麻省理工学院领导的。他的许多“停止运动”照片都是众所周知的图标,如图1所示,在一个专门的在线画廊里还有

2020-06-26 09:39:26 93

原创 特斯拉Tesla Model 3整体架构解析(下)

特斯拉Tesla Model 3整体架构解析(中)Tesla Computer Unit特斯拉已经开发了一个由自动驾驶仪和信息计算机组成的定制“液冷双计算平台”。“他们建立在同一模块的两个不同的董事会上,”System Plus首席执行官弗劳克斯解释道。一边是信息娱乐电子控制单元(ECU)或MCU。另一边是自动驾驶ECU。在最初安装在型号3上的HW2.5中,特斯拉的自动驾驶仪仍然由英伟达的SOC和GPU启用。特斯拉集成了几家制造商的完整模块,这些制造商与英伟达的高性能集成电路(用于GPU)、英特尔

2020-06-26 08:19:48 489

原创 特斯拉Tesla Model 3整体架构解析(上)

特斯拉Tesla Model 3整体架构解析(上)一辆特斯拉 Model 3型车在硬件改造后解体Sensors for ADAS applications特斯拉 Model 3型设计的传感器组件包括:8个摄像头,可在250米半径内提供汽车周围360度的可视性;12个超声波传感器,可完成这一视觉系统。它们共同允许在一定距离内检测硬物体和软物体,精度几乎是以前系统的两倍。该软件包还集成了一个具有改进处理能力的前向雷达系统。它提供了关于周围环境的额外数据,其冗余波长可以穿透大雨、大雾、灰尘,甚至超越以前的

2020-06-26 07:59:53 2162

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除