自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

吴建明wujianming_110117

吴建明专业博客wujianming_110117

  • 博客(230)
  • 问答 (8)
  • 收藏
  • 关注

原创 CUDA刷新器:CUDA编程模型

CUDA刷新器:CUDA编程模型CUDA Refresher: The CUDA Programming ModelCUDA,CUDA刷新器,并行编程这是CUDA更新系列的第四篇文章,它的目标是刷新CUDA中的关键概念、工具和初级或中级开发人员的优化。CUDA编程模型提供了GPU体系结构的抽象,它充当了应用程序与其在GPU硬件上的可能实现之间的桥梁。这篇文章概述了CUDA编程模型的主要概念,概述了它如何在通用编程语言如C/C++中暴露出来。介绍一下CUDA编程模型中常用的两个关键词:主机和设备。

2020-07-26 11:00:07 172

原创 利用MONAI加速医学影像学的深度学习研究

利用MONAI加速医学影像学的深度学习研究Accelerating Deep Learning Research in Medical Imaging Using MONAI医学开放式人工智能网络(MONAI)是一个免费提供、社区支持、基于Pythorch的医疗影像学深度学习框架。它为开发训练工作流程提供了领域优化的基础功能。在4月份发布的gtc2020 alpha版本的基础上,MONAI现在发布了0.2版本,为医学成像研究人员提供了新的功能、示例和研究实现,以加快人工智能开发的创新步伐。有关更多信息

2020-07-26 07:39:05 272

原创 构建可扩展的GPU加速应用程序(NVIDIA HPC)

构建可扩展的GPU加速应用程序(NVIDIA HPC)研究人员、科学家和开发人员正在通过加速NVIDIA GPU上的高性能计算(HPC)应用来推进科学发展,NVIDIA GPU具有处理当今最具挑战性的科学问题的计算能力。从计算科学到人工智能,GPU加速应用正在带来突破性的科学发现。流行的语言如C、C++、FORTRAN和Python正被用来开发、优化和部署这些应用程序。面向HPC的GPU程序设计NVIDIA GPU可以编程得很像CPU。从替换GPU优化的数学库开始。使用标准C++并行算法和FORTRA

2020-07-22 07:52:15 239

原创 使用卷积神经网络的自动心电图诊断

使用卷积神经网络的自动心电图诊断AutomaticECG Diagnosis Using Convolutional Neural Networkhttps://www.mdpi.com/2079-9292/9/6/951/htm摘要心血管疾病(CVD)是最常见的慢性和危及生命的疾病,因此被认为是造成死亡的主要原因之一。基于最近流行的卷积神经网络(CNN)提出的新神经体系结构是使用心电图(ECG)信号开发自动心脏病诊断系统的解决方案。更具体地说,ECG信号直接传递到经过适当训练的CNN网络。该数据

2020-07-17 09:44:07 953

原创 Python分析离散心率信号(下)

Python分析离散心率信号(下)如何使用动态阈值,信号过滤和离群值检测来改善峰值检测。一些理论和背景到目前为止,一直在研究如何分析心率信号并从中提取最广泛使用的时域和频域度量。但是,使用的信号是理想的。现在考虑这个信号:一个挑战!这是遇到的信号质量的另一个极端。老实说,当将传感器连接到手指上时(在0到4000之间),通过测量产生了该信号。在此之后,手指中的血管需要立即适应传感器的压缩(大约4​​000-5000),此后信号变得稳定。在大约7500、9000和12000时,用力将传感器移到手指上

2020-07-17 07:07:17 246

原创 Python分析离散心率信号(中)

Python分析离散心率信号(中)一些理论和背景心率信号不仅包含有关心脏的信息,还包含有关呼吸,短期血压调节,体温调节和荷尔蒙血压调节(长期)的信息。也(尽管不总是始终如一)与精神努力相关联,这并不奇怪,因为大脑是一个非常饥饿的器官,因此消耗了总葡萄糖的25%和氧气消耗的20%。如果活动增加,心脏需要更加努力地工作以保持其供应。感兴趣的是这些措施可以被分为时间序列数据连接频域数据。如果熟悉傅立叶变换,则频率部分会很有意义。如果不是,请参阅维基百科页面具有很好的解释,并且对过程也非常直观。基本思想是,要

2020-07-16 20:49:28 291

原创 Python分析离散心率信号(上)

Python分析离散心率信号(上)一些理论和背景心率包含许多有关信息。如果拥有心率传感器和一些数据,那么当然可以购买分析包或尝试一些可用的开源产品,但是并非所有产品都可以满足需求。也是这种情况。那么,为什么不尝试自己做一个人呢?如果正在阅读本文,那么可能想尝试一下。本文适合那些有兴趣了解更多关于心率分析以及如何使用一些基本模块用Python编写简单但有效的分析算法的人。在谈论心率信号的形状时,每个搏动都具有QRS复数的特征,如a。,I-III(QRS)所示。还有一个P波(IV)和一个T波(V)。R成分

2020-07-16 19:42:50 318

原创 适用于Windows和Linux的Yolo-v3和Yolo-v2(下)

适用于Windows和Linux的Yolo-v3和Yolo-v2(下)如何训练(检测自定义对象):(培养老YOLO V2 yolov2-voc.cfg,yolov2-tiny-voc.cfg,yolo-voc.cfg,yolo-voc.2.0.cfg,… 通过链接点击)训练Yolo v3:创建yolo-obj.cfg内容与中相同的文件yolov3.cfg(或复制yolov3.cfg到yolo-obj.cfg)和:将行批次更改为 batch=64将线路细分更改为 subdivisions=16

2020-07-16 18:02:08 150

原创 适用于Windows和Linux的Yolo-v3和Yolo-v2(上)

适用于Windows和Linux的Yolo-v3和Yolo-v2(上)https://github.com/eric-erki/darknetAB(用于对象检测的神经网络)-Tensor Cores可以在Linux和Windows上使用更多详细信息:http : //pjreddie.com/darknet/yolo/要求(以及如何安装依赖项)预训练模型问题说明Yolo v3在其框架(TensorRT,TensorFlow,PyTorch,OpenVINO,OpenCV-dnn,TVM等)中

2020-07-16 17:43:33 258

原创 黎曼曲面Riemann Surface

黎曼曲面Riemann SurfaceA Riemann surface is a surface-like configuration that covers the complex plane with several, and in general infinitely many, “sheets.” These sheets can have very complicated structures and interconnections (Knopp 1996,pp. 98-99). Riem

2020-07-16 15:57:45 142

原创 利用UltraScale和UltraScale+FPGA和MPSOC加速DSP设计生产力

利用UltraScale和UltraScale+FPGA和MPSOC加速DSP设计生产力Accelerating DSP Design Productivity with UltraScale and UltraScale+ FPGAs and MPSoCs由于其固有的灵活性,Xilinx fpga和soc是高性能或多通道数字信号处理(DSP)应用的理想选择,可以利用硬件并行性。Xilinx FPGA和SOC将这种处理带宽与全面的解决方案相结合,包括为硬件设计师、软件开发人员和系统架构师提供的易于使用的

2020-07-16 09:18:21 152

原创 ARM系列处理器和架构

从一只ARM到另一只ARM!ARM处理器和架构当前可用的处理器ARM1ARM2ARM3ARM4和5ARM6ARM7ARM8强壮有力的ARMARM9ARM10ARM架构v1 -ARM1。v2 -ARM2。v2as -ARM3和ARM250。v3 -ARM6,ARM7,ARM8和护身符1。v3M- 各种ARM6、7和8变体。v4 -StrongARM,ARM9。v5 -ARM10。VFP1 -ARM10(的某些变体)。Thumb(T型)。长乘法指令(M个变体)。增

2020-07-16 08:19:29 130

原创 Thumb扩展

Thumb扩展ARM处理器已在嵌入式系统,手持计算机和其系统中得到了最大的应用,在这些系统中,系统对使用有限资源进行大量工作的要求很高。Thumb扩展是为解决资源消耗中的某些方面而创建的,已成为当今几乎所有ARM芯片上的标准扩展。小型系统上受限的资源之一是指令存储器。有限的指令存储器限制了可以在处理器上运行的程序的大小,因此想寻找减小代码大小的方法。当可以找到编译优化时,编译时优化是实现此目标的一种显而易见的方法。增大指令集的大小是另一种方法,但这通常会导致整个板上各个指令的大小增加,这将导致存储指令所

2020-07-16 07:03:49 76

原创 不是都需要ARM吗?

不是都需要ARM吗?ARM系统架构简介什么是ARM处理器,为什么没有听说?ARM-缩写:Advanced RISC Machines该处理器起源于1984年的英格兰。在成立之初,ARM代表Acorn RISC Machine。最早的ARM依赖系统包括Acorn:BBC Micro,Masters和Archimedes。在此早期,主要用于英国的教育系统,因此在英格兰以外并不广泛使用或广为人知。但是在1987年,ARM成为了第一款商用RISC处理器。1990年,橡果研究部门从母公司中分离出来,成立了:

2020-07-16 06:54:05 98

原创 ARMed解决方案对DSP的战争

ARMed解决方案对DSP的战争ARM体系结构简化了数字信号处理ARM与数字信号处理(DSP)有什么关系?ARM似乎在处理领域处于领先地位。该处理器已将其视为其最大的细分市场之一,这主要是由于该公司已采取一些措施以适应嵌入式市场及其采用的体系结构。DSP在手机,无绳电话,基站,传呼机,调制解调器,智能手机和PDA(个人数字或数据助手)中普遍采用嵌入式处理器。利用此类处理器的其嵌入式应用程序包括:磁盘驱动器控制器,汽车引擎控制和管理系统,数字自动环绕声,电视机顶盒和互联网设备。仍在修改其产品以利用:

2020-07-16 06:41:31 71

原创 Json文件解析(下

Json文件解析(下)代码地址:https://github.com/nlohmann/json从STL容器转换任何序列容器(std::array,std::vector,std::deque,std::forward_list,std::list),其值可以被用于构建JSON值(例如,整数,浮点数,布尔值,字符串类型,或者再次在本节中描述STL容器)可被用于创建JSON阵列。这同样适用于类似的关联容器(std::set,std::multiset,std::unordered_set,std::un

2020-07-14 19:04:14 174

原创 Json文件解析(上)

Json文件解析(上)代码地址:https://github.com/nlohmann/json自述文件alt=GitHub赞助商data-canonical-src=“https://img.shields.io/badge/GitHub-Sponsors-ff69b4”v:shapes="_x0000_i1025">设计目标赞助商积分CMake的包装经理包配置例子JSON作为一流的数据类型序列化/反序列化类似STL的访问从STL容器转换JSON指针和JSON补丁

2020-07-14 18:55:34 117

原创 TensorFlow中的语义分割套件

TensorFlow中的语义分割套件描述该存储库用作语义细分套件。目标是轻松实现,训练和测试新的语义细分模型!完成以下内容:训练和测试方式资料扩充几种最先进的模型。轻松随插即用能够使用任何数据集评估包括准确性,召回率,f1得分,平均准确性,每类准确性和平均IoU绘制损失函数和准确性欢迎提出任何改进此存储库的建议,包括希望看到的任何新细分模型。也可以签出Transfer Learning Suite。引用如果发现此存储库有用,请考虑使用回购链接将其引用:)前端当前提供以下特征提取模

2020-07-14 16:15:57 139

原创 PyTorch中的MIT ADE20K数据集的语义分割

PyTorch中的MIT ADE20K数据集的语义分割代码地址:https://github.com/CSAILVision/semantic-segmentation-pytorchSemantic Understanding of Scenes through ADE20K Dataset. B.Zhou, H. Zhao, X. Puig, T. Xiao, S. Fidler, A. Barriuso and A. Torralba.International Journal on Comp

2020-07-14 14:46:48 422

原创 Mask R-CNN用于目标检测和分割代码实现

Mask R-CNN用于目标检测和分割代码实现Mask R-CNN for object detection and instance segmentation on Keras and TensorFlow代码链接:https://github.com/matterport/Mask_RCNN这是基于Python 3,Keras和TensorFlow 的Mask R-CNN的实现。该模型为图像中对象的每个实例生成边界框和分割masks。基于功能金字塔网络Feature Pyramid Network

2020-07-14 11:18:18 330

原创 双圆弧插值算法(三,代码实现)

双圆弧插值算法(三,代码实现)交互式演示 这是一个用HTML5编写的交互式演示。要移动控制点,请单击并拖动它们。若要移动切线,请单击并拖动控制点外的区域。默认情况下,曲线保持d1和d2相等,但也可以在下面指定自定义d1值。代码到目前为止,我们只讨论了二维情况。让我们编写一些C++代码来解决三维的情况。它非常相似,除了每个弧可以在不同的平面上对齐。这将在查找旋转方向和平面法线时创建一些调整。经过几次交叉积后,一切都成功了。 这些代码示例是在以下许可下发布的。/*******************

2020-07-14 09:06:55 137

原创 双圆弧插值算法(二)

双圆弧插值算法(二)找到中心找到连接点后,就可以求解圆心。我们定义一个向量,n1,垂直于t1。这最终是一个与(c1−p1)平行的标准化向量。从p1到c1的方向。综合起来,我们得到了c1的解。通过检查上述方程中的分母,我们可以看出,如果p1到pm的向量与t1共线,它将为零。圆的中心基本上被推到无穷远,这给我们留下了p1和pm之间的一条直线,而不是一条弧。对c2使用相同的方法得出:选择方向现在我们需要选择围绕中心点旋转的方向。这取决于d1和d2的符号。对于正的情况,我们选择绕圆较短的路径。对于

2020-07-14 08:17:57 117

原创 双圆弧插值算法(一)

双圆弧插值算法(一)Biarc Interpolation在游戏开发中经常出现两点间的插值问题。大多数情况下,只需要一个简单的线性插值。线性插值很好,因为不会真的弄错。只有一条可能的线连接这些点。跟着走。当需要曲线插值时,求解会变得复杂得多。有无限数量的曲线可供选择,并有许多方法来生成:NURBS、Catmull Rom、Bézier、Hermite等。想讨论一种生成圆形圆弧的不太常见的方法。为什么想要一个圆插值?一个原因可能是看起来很悦目,但也有一些实际用途。如果正在制作一个放置道路的水平编辑工

2020-07-14 06:54:59 180

原创 解读模拟摇杆原理及实验

解读模拟摇杆原理及实验Interpreting Analog Sticks当游戏支持控制器时,玩家可能会一直使用模拟摇杆。在整个体验过程中,钉住输入处理可能会对质量产生重大影响。让来看一些核心概念以及INVERSUS的示例。检查在调整模拟摇杆之前,需要了解其工作原理。当移动摇杆时,实际报告的硬件是什么?这是INVERSUS的摇杆检查的样子。并不是说这是最好的显示方式,但是所有传达的信息都很重要。在详细介绍每个部分之前,让给出一个高层次的概述。正在使用连接到PC的Xbox 360控制器。第一行代表

2020-07-14 06:16:14 206

原创 模拟到数字输入转换

模拟到数字输入转换Analog to Digital Input Translation模数转换通常使用模拟输入法(控制棒、触发按钮)来控制数字系统。也许你想用模拟棒控制菜单。也许你想检测一下模拟棒的敲击或双击。或者,正如本文的重点,您可能想用模拟触发器发射子弹。要做到这一点,需要比你预期的更为微妙。虽然INVERSUS并没有将射击绑定到模拟触发器上,但它的开始确实是这样的。你可以在我关于parry系统的文章中了解到为什么我改变了计划(尽管它可能值得它自己的文章),但重要的是要弄清楚它并不是因为触发

2020-07-13 19:39:59 75

原创 色彩(颜色)空间原理(实现代码)

色彩(颜色)空间原理(实现代码)编写代码对于代码示例,我将展示生成线性变换矩阵的算法和在sRGB空间和XYZ空间之间进行完全转换的示例。为了实现其他RGB空间,您只需要实现适当的gamma校正曲线(它应该比sRGB曲线更简单),并提供原色和白点的色度值。这些代码示例是在以下许可下发布的。First we need a few simple math types.Next we need a few math helper functions.These are the gamma cor

2020-07-13 18:54:04 124

原创 色彩(颜色)空间原理(下)

色彩(颜色)空间原理(下)sRGB空间的线性变换示例为了帮助理解矩阵推导,让我们遍历sRGB颜色空间的数字。首先,回想一下我们在色度图上绘制的红色,绿色,蓝色和白色的xy色度坐标。接下来将xy坐标转换为xyz坐标。接下来,使用1的Y亮度值将白点xyz坐标转换为XYZ坐标。重建矩阵 中号中号 从线性sRGB空间转换为XYZ空间。如果要从XYZ反向转换为线性sRGB空间,请使用 中号中号。检查color.org上的sRGB规范,您将找到相同的值中个(四舍五入到小数点后四位)分别在公式1.

2020-07-13 18:18:21 173

原创 色彩(颜色)空间原理(中)

色彩(颜色)空间原理(中)颜色的线性变换现在我们知道如何定义RGB颜色空间,以及如何使用伽玛曲线在线性和伽玛校正值之间进行转换。剩下的最后一步是将线性RGB颜色转换为XYZ颜色。一旦进入XYZ空间,我们就可以转换回我们选择的任何RGB空间,但这实际上只是开始。因为XYZ空间是定义其他颜色的标准颜色空间,所以我们可以选择转换为许多非RGB颜色空间,例如在感知上更统一的Lab颜色空间或生物驱动的LMS颜色空间。线性RGB空间和XYZ空间之间转换的基本部分是认识到它们都是矢量空间。这基本上意味着数字以线性方

2020-07-13 17:54:52 163

原创 色彩(颜色)空间原理(上)

色彩(颜色)空间原理(上)RGB色彩空间转换我最近在进行色彩科学方面的工作,当您要正确使用数字色彩值时,从一种色彩空间转移到另一种色彩空间成为一种常见操作。通常,我们只是将数字颜色视为RGB值,但是有许多方法可以用数字方式描述颜色。只需打开PhotoShop的拾色器,您就可以选择除标准RGB之外的其他颜色作为HSV,Lab或CMYK值。如果您对PhotoShop有所了解,您甚至可以尝试使用“颜色设置”,它具有更多选项,包括您的图像将使用哪个RGB版本。我将重点关注多个RGB空间的概念。根据您最终的到

2020-07-13 16:52:54 190

原创 RGB Color Codes Chart

RGB Color Codes ChartRGB颜色空间RGB颜色空间或RGB颜色系统,从红色、绿色和蓝色的组合中构造所有颜色。红色、绿色和蓝色各使用8位,它们的整数值从0到255。这使得256256256=16777216可能的颜色。RGB≡红、绿、蓝LED显示器中的每个像素都是通过红色、绿色和蓝色LED(发光二极管)的组合来显示颜色的。当红色像素设置为0时,LED关闭。当红色像素设置为255时,LED完全打开。它们之间的任何值都会将LED设置为部分发光。RGB color codes

2020-07-13 16:19:00 79

原创 h265webplayer

h265webplayerhttps://github.com/ksvc/h265webplayerh265webplayer是金山云的Web端H.265视频播放器,该播放器Web SDK让您可以在支持WebAssembly的浏览器上播放MP4格式的点播视频,FLV http-flv协议的直播视频。支持的功能1、mp4格式的点播(音频需是aac格式的,其余音频格式待兼容)。2、flv格式的直播。兼容性目前PC端和移动端都可以使用,使用前请使用播放器提供的isSupportH265接口检查是否支

2020-07-13 11:34:17 212

原创 h265player开发

h265player开发https://github.com/goldvideo/h265player简介随着视频编码技术的发展,相比H.264, H.265同等画质体积仅为一半、带宽占用省一半、画质更细腻等诸多优势。 但Web浏览器还不支持H.265的解码播放,因此基于Web Assembly(封装FFmpeg)、JS解封装、Canvas投影以及AudioContext实现Web端的H265播放。支持主要浏览器及其版本如下:Chrome(>57) Safari (>11) Firef

2020-07-13 08:20:24 218

原创 ffmpeg architecture(下)

ffmpeg architecture(下)第3章-转码TLDR;给我看代码和执行。$ make run_transcoding我们将跳过一些细节,但是请放心:源代码可在github上找到。在本章中,我们将创建一个用C编写的极简代码转换器,可以使用FFmpeg / libav库(尤其是libavcodec,libavformat和libavutil)将H264编码的视频转换为H265。只是快速回顾一下:该AVFormatContext是媒体文件格式的抽象,又名容器(例如:MKV,MP4,WEBM

2020-07-13 07:49:43 107

原创 ffmpeg architecture(中)

ffmpeg architecture(中)艰苦学习FFmpeg libav您是否不奇怪有时会发出声音和视觉?由于FFmpeg作为命令行工具非常有用,可以对媒体文件执行基本任务,因此如何在程序中使用它?FFmpeg 由几个库组成,这些库可以集成到我们自己的程序中。通常,当您安装FFmpeg时,它将自动安装所有这些库。我将这些库的集合称为FFmpeg libav。此标题是对Zed Shaw的系列“ Learn X the Hard Way”(特别是他的书“ Learn C the Hard Way”

2020-07-13 06:59:37 115

原创 ffmpeg architecture(上)

ffmpeg architecture(上)· 视频-您看到的是什么!· 如果您有一系列图像序列,并以给定的频率(例如每秒24张图像)进行更改,则会产生运动的错觉。总之,这是视频背后的基本概念:一系列以给定速率运行的图片/帧。音频-您在听什么!尽管静音的视频可以表达各种感觉,但是添加声音可以为体验带来更多乐趣。声音是指压力波通过空气或任何其他传输介质(例如气体,液体或固体)传播的振动。在数字音频系统中,麦克风将声音转换为模拟电信号,然后通常使用脉冲编码调制(PCM)的模

2020-07-13 06:37:47 84

原创 降低数值精度以提高深度学习性能

降低数值精度以提高深度学习性能Lowering Numerical Precision to Increase Deep Learning Performance深度学习训练和推理将成为未来几十年的计算重量级。例如,训练图像分类器可能需要1018个单精度操作。这一需求使得深度学习计算的加速成为英特尔和整个人工智能界的一个重要研究领域。我们特别兴奋的一种方法是使用较低精度的数学运算进行深度学习推理和训练。在英特尔最新发布的白皮书中,我们回顾了最近关于低精度深度学习的研究,了解英特尔如何在英特尔至强可伸缩

2020-07-12 16:29:24 124

原创 IaaS、PaaS 和 SaaS:云服务模型概述

IaaS、PaaS 和 SaaS:云服务模型概述为您的组织选择合适的云服务模型,可以帮助您充分利用预算和 IT 资源。基础设施即服务 (IaaS)、平台即服务 (PaaS) 以及软件即服务 (SaaS) 均可提供不同级别的控制和管理。了解哪种模型最适合您的需求。· 基础设施即服务 (IaaS) 为云服务提供硬件,其中包括服务器、网络和存储。· 平台即服务 (PaaS) 除了提供 IaaS 可提供的所有硬件之外,还提供操作系统和数据库。· 软件即服务 (SaaS) 提

2020-07-12 16:05:23 240

原创 英特尔Intel® Arria® 10 FPGA加速器设计

英特尔Intel® Arria® 10 FPGA加速器设计Introducing the Intel® Vision Accelerator Design with Intel® Arria® 10 FPGA深度 学习的挑战智能摄像机的激增和视频数据的爆炸,再加上较长的保留期和更高的图像分辨率是一个重大挑战对于许多组织来说,当他们努力收集、处理、组织和提取时从这些大型数据集中获取有意义的信息和见解。此外,这数据的快速增长对容量和性能提出了巨大的要求在计算、存储和网络资源方面,导致效率低下和更高的成本,以

2020-07-12 15:42:30 129

原创 基于至强® 平台的内存数据库解决方案

基于至强® 平台的内存数据库解决方案英特尔与 SAP 之间的协作和联合开发已持续六年。· SAP HANA 平台的创新内存架构契合持久内存,仅需少量变更。· SAP HANA 平台是第一个支持英特尔®傲腾™ 数据中心级持久内存的重要数据库平台。· SAP HANA® 2.0 SPS 03 包含众多针对 SAP HANA 平台的创新,是首个支持英特尔® 傲腾™ 数据中心级持久内存数据库解决方案。· SAP HANA® 平台在内存优先的一体化平台中提供先进的数据

2020-07-12 15:01:35 88

原创 MLPerf结果证实至强® 可有效助力深度学习训练

MLPerf结果证实至强® 可有效助力深度学习训练· 核心与视觉计算事业部副总裁Wei Li通过博客回顾了英特尔这几年为提升深度学习性能所做的努力。· 目前根据英特尔® 至强® 可扩展处理器的MLPerf结果显示,英特尔® 至强®可扩展处理器已超出性能阈值,对于希望在基础设施上运行多个工作负载的数据科学家,因为他们无需投资购买专用硬件,这款处理器是一个有效选择。· 20 多年来,我一直致力于在超级计算机、数据库服务器和移动设备等平台上对计算机性能进行优化与基准测试。突出

2020-07-12 13:34:08 194 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除