自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

吴建明wujianming_110117

吴建明专业博客wujianming_110117

  • 博客(164)
  • 问答 (8)
  • 收藏
  • 关注

原创 双精度张量内核加快了高性能计算

双精度张量内核加快了高性能计算通过NVIDIA Ampere架构,仿真和迭代求解器可将FP64数学提高多达2.5倍。模拟可以帮助了解黑洞的奥秘,并了解冠状病毒上的蛋白质尖峰如何导致COVID-19。还可以让设计师创建从时尚汽车到喷气发动机的所有东西。但是仿真也是地球上最苛刻的计算机应用程序之一,因为需要大量最先进的数学。通过使用称为FP64的双精度浮点格式的计算,仿真使数值模型变得可视化。格式中的每个数字在计算机中占用64位,使其成为当今GPU支持的多种数学格式中计算强度最高的一种。NVIDIA

2020-12-30 14:09:03 75

原创 A100计算能力

A100计算能力A100 GPU支持新的计算功能8.0。表1比较了NVIDIA GPU架构的不同计算功能的参数。数据中心GPU NVIDIA Tesla P100 NVIDIA Tesla V100 NVIDIA A100GPU代号 GP100 GV100 GA100GPU架构 NVIDIA Pascal NVIDIA Volta NVIDIA安培计算能力 6.0 7.0 8.0线/经线 32 32 32最大翘曲/ SM 64 64 64最大线程数/ SM 2048 2048 2048最大

2020-12-30 14:04:35 726

原创 A100 Tensor核心可加速HPC

A100 Tensor核心可加速HPCHPC应用程序的性能需求正在迅速增长。众多科学研究领域的许多应用程序都依赖于双精度(FP64)计算。为了满足HPC计算快速增长的计算需求,A100 GPU支持Tensor操作,以加速符合IEEE的FP64计算,提供的FP64性能是NVIDIA Tesla V100 GPU的2.5倍。A100上新的双精度矩阵乘法加法指令替换了V100上的八条DFMA指令,从而减少了指令提取,调度开销,寄存器读取,数据路径功率和共享存储器读取带宽。A100中的每个SM总共计算64个

2020-12-30 13:54:22 106

原创 A100 GPU硬件架构

A100 GPU硬件架构NVIDIA GA100 GPU由多个GPU处理群集(GPC),纹理处理群集(TPC),流式多处理器(SM)和HBM2内存控制器组成。GA100 GPU的完整实现包括以下单元:• 每个完整GPU 8个GPC,8个TPC / GPC,2个SM / TPC,16个SM / GPC,128个SM• 每个完整GPU 64个FP32 CUDA内核/ SM,8192个FP32 CUDA内核• 每个完整GPU 4个第三代Tensor核心/ SM,512个第三代Tensor核心• 6个H

2020-12-30 13:36:35 89

原创 NVIDIA深度架构

NVIDIA深度架构今天,在2020年NVIDIA GTC主题演讲中,NVIDIA创始人兼首席执行官黄仁勋介绍了基于新NVIDIA Ampere GPU架构的新NVIDIA A100 GPU。本文介绍新的A100 GPU,并介绍了NVIDIA Ampere架构GPU的重要新功能。现代云数据中心中运行的计算密集型应用程序的多样性推动了NVIDIA GPU加速的云计算的爆炸式增长。此类密集型应用程序包括AI深度学习(DL)训练和推理,数据分析,科学计算,基因组学,边缘视频分析和5G服务,图形渲染,云游戏等。

2020-12-30 13:29:38 61 1

原创 稀疏性如何为AI推理增加难度

稀疏性如何为AI推理增加难度NVIDIA Ampere架构使数学运算加倍,以加速对各种神经网络的处理。如果曾经玩过游戏Jenga,那么将有一些AI稀疏感。玩家将木制积木交叉成一列。然后,每个玩家轮流小心地移开一个障碍物,而不会倾倒立柱。它从一开始就很容易,但是变得越来越毛茸茸,直到失败的玩家拔出一个障碍物,导致塔楼坠毁。多年来,研究人员一直在努力地利用数字打积木,以利用稀疏性来加速AI。他们尝试从神经网络中提取尽可能多的不需要的参数-而不破坏AI的超高精度。目标是减少深度学习所需的矩阵乘法堆,从

2020-12-30 08:44:44 36

原创 cuSPARSELt开发NVIDIA Ampere结构化稀疏性

cuSPARSELt开发NVIDIA Ampere结构化稀疏性深度神经网络在各种领域(例如计算机视觉,语音识别和自然语言处理)中均具有出色的性能。处理这些神经网络所需的计算能力正在迅速提高,因此有效的模型和计算至关重要。神经网络剪枝(删除不必要的模型参数以生成稀疏网络)是一种在保持准确性的同时降低模型复杂性的有用方法。为了利用细粒度的网络剪枝,NVIDIA Ampere GPU架构引入了细粒度的结构稀疏性的概念。在NVIDIA A100 GPU上,结构显示为2:4模式:每四个元素中至少有两个必须为零。通

2020-12-30 08:15:56 108

原创 在NVIDIA A100 GPU中使用DALI和新的硬件JPEG解码器快速加载数据

在NVIDIA A100 GPU中使用DALI和新的硬件JPEG解码器快速加载数据如今,最流行的拍照设备智能手机可以捕获高达4K UHD的图像(3840×2160图像),原始数据超过25 MB。即使考虑到令人尴尬的低HD分辨率(1280×720),原始图像也需要超过2.5 MB的存储空间。存储少至100张UHD图像将需要近3 GB的可用空间。显然,如果以这种方式存储数据,则会很快耗尽空间。这是图像压缩派上用场的地方。众所周知的JPEG格式可以将图像大小从30 MB缩小到3 MB。对于深度学习的计算机视

2020-12-30 07:16:31 104

原创 在NVIDIA A100 GPU上利用硬件JPEG解码器和NVIDIA nvJPEG库

在NVIDIA A100 GPU上利用硬件JPEG解码器和NVIDIA nvJPEG库根据调查,普通人产生的1.2万亿张图像可以通过电话或数码相机捕获。这样的图像的存储,尤其是以高分辨率的原始格式,会占用大量内存。JPEG指的是联合图像专家组,该组织于2017年庆祝成立25周年。JPEG标准指定了编解码器,该编解码器定义了如何将图像压缩为字节的位流并解压缩回图像。JPEG编解码器的主要目的是最小化照片图像文件的文件大小。JPEG是一种有损压缩格式,这意味着它不存储原始图像的完整像素数据。JPEG的优点

2020-12-30 06:51:01 204

原创 nvJPEG Codec库

nvJPEG Codec库nvJPEG库是高性能的GPU加速库,用于解码,编码和转码JPEG格式的图像。nvJPEG2000库用于解码JPEG 2000格式的图像。与单CPU解码相比,依赖nvJPEG或nvJPEG2000进行解码的应用程序可提供更高的吞吐量和更低的延迟。nvJPEGnvJPEG库为计算机视觉应用中使用的常见JPEG格式(例如图像分类,对象检测和图像分割)提供低延迟解码,编码和转码。nvJPEG主要功能• 同时使用CPU和GPU的混合解码• 在A100 GPU上进行基线JPEG解

2020-12-30 06:09:43 157 1

原创 什么是OpenMAX技术分析OpenMAX

什么是OpenMAX技术分析OpenMAXOpenMAX是统一的抽象层,它允许访问否则需要供应商特定API的硬件。Broadcom的MMAL(多媒体抽象层API)。因此,OpenMAX允许使用此类硬件的软件的(某种)便携式实现。本文概述Raspberry Pi的硬件媒体功能以及如何使用OpenMAX访问它。Raspberry Pi Foundation提供的官方OpenMAX IL 1.1.2文档和IL组件文档构成了本文的基础。(Khronos宣布OpenMAX为无效标准。无论如何。OpenMAX提供

2020-12-29 09:09:44 100

原创 OpenMAX概述

OpenMAX概述媒体库可移植性标准OpenMAX™是免费的跨平台API,通过支持跨多个操作系统和芯片平台开发,集成和编程加速多媒体组件,从而提供了全面的流媒体编解码器和应用程序可移植性。OpenMAX API将随处理器一起提供,以使库和编解码器实施者能够快速有效地利用新芯片的全部加速潜能-而不管底层的硬件体系结构如何。OpenMAX AL 1.1概览• Khronos注册表中提供了OpenMAX AL 1.1规范和头文件。• 《 OpenMAX AL 1.1参考指南》。OpenMAX AL 1

2020-12-29 08:53:42 44

原创 二进制调色器程序管理

二进制调色器程序管理自动调色器缓存比较与组合调色器程序通常以源代码形式存储,并在应用程序通过调用OpenGL ES API首次使用时,由OpenGL ES驱动程序进行编译和链接。还可以使用离线调色器编译器glslc预编译调色器程序。这样就无需在运行时编译那些调色器程序。如果应用程序使用的所有调色器程序均已预编译,则OpenGL ES驱动程序,可以通过根本不加载编译器库来节省更多时间和资源。应用程序还可以直接控制二进制程序管理。它可以使用OpenGL ES 3.0中添加的glGetProgramBi

2020-12-29 08:40:24 80

原创 WebRTC框架中的硬件加速

WebRTC框架中的硬件加速典型缓冲液流量应用程序和单元测试设置重要方法调用WebRTC软件包局限性WebRTC是一个免费的开源项目,可为浏览器和移动应用程序提供实时通信功能。WebRTC的主要功能是能够发送和接收交互式高清视频。快速处理此类视频需要硬件加速的视频编码。当前,开源WebRTC项目框架支持各种软件编码器类型:VP8,VP9和H264。NVIDIA将硬件加速的H.264编码集成到WebRTC编码框架中。本文档使用名称NvEncoder表示此功能。典型缓冲液流量下图显示了硬件加

2020-12-29 08:26:22 98 2

原创 什么是GStreamer?

什么是GStreamer?GStreamer是用于创建流媒体应用程序的框架。基本设计来自俄勒冈大学研究生院的视频管道以及DirectShow的一些想法。GStreamer的开发框架使编写任何类型的流多媒体应用程序成为可能。GStreamer框架旨在简化编写处理音频或视频或两者的应用程序的过程。它不仅限于音频和视频,而且可以处理任何类型的数据流。流水线设计的开销要比应用的滤波器引起的开销小。这使GStreamer成为设计甚至对延迟有高要求的高端音频应用程序的良好框架。GStreamer最明显的用途之一就

2020-12-29 07:40:18 69

原创 gst-crypto GStreamer插件

gst-crypto GStreamer插件内容• 1. gst-crypto概述o 1.1gst-crypto GStreamer插件功能o 1.2用例范例• 2. GStreamer插件支持• 3. 在本地Linux PC上构建并运行o 3.1源代码获取 3.1.1GStreamer 0.10.x 3.1.2GStreamer 1.xo 3.2汇编• 4. gst-crypto源代码o 4.1位置• 5. RR SDK集成o 5.1 GStreamer 0.10.x

2020-12-29 07:38:47 84

原创 GStreamer跨平台多媒体框架

GStreamer跨平台多媒体框架Gstreamer基本概念GStreamer是用于构造媒体处理组件图的库。它支持的应用程序范围从简单的Ogg / Vorbis回放,音频/视频流到复杂的音频(混合)和视频(非线性编辑)处理。应用程序可以透明地利用编解码器和过滤器技术的优势。可以通过编写带有通用接口的简单插件来添加新的编解码器和过滤器。• 播放DVB流时的MPEG-TS时间戳回归• 合成器:某些输入缩放/转换情况下的伪影,并确保实际支持输出格式,以及重新协商• 通过giosrc改进decodebi

2020-12-29 06:38:22 116

原创 CUDA Pro:通过向量化内存访问提高性能

CUDA Pro:通过向量化内存访问提高性能许多CUDA内核受带宽限制,而新硬件中触发器与带宽的比率不断提高,导致带宽受限制的内核更多。这使得采取措施减轻代码中的带宽瓶颈非常重要。本文将展示如何在CUDA C / C ++中使用向量加载和存储,以帮助提高带宽利用率,同时减少已执行指令的数量。从以下简单的内存复制内核开始。global void device_copy_scalar_kernel(int* d_in, int* d_out, int N) {int idx = blockIdx.x *

2020-12-29 05:47:22 57

原创 CUDA 8的混合精度编程

CUDA 8的混合精度编程Volta和Turing GPU包含 Tensor Cores,可加速某些类型的FP16矩阵数学运算。这样可以在流行的AI框架内更快,更轻松地进行混合精度计算。要使用Tensor Core,需要使用 CUDA 9 或更高版本。NVIDIA还 为TensorFlow,PyTorch和MXNet添加了 自动混合精度功能。流行AI框架的张量核心优化示例 。在软件开发的实践中,程序员通常会及早学习到使用正确的工具完成工作的重要性。当涉及数值计算时,这一点尤其重要,因为在数值计算中,精

2020-12-29 05:47:04 60

原创 在cuDNN中简化Tensor Ops

在cuDNN中简化Tensor Ops在Tesla V100 GPU中引入神经网络模型以来,神经网络模型已迅速利用NVIDIA Tensor Cores进行深度学习。例如,基于Tensor Core的解决方案宣布了ResNet50训练的性能记录。NVIDIA的cuDNN库 使CUDA程序员能够优化循环神经网络和卷积神经网络,以实现GPU加速。概述了cuDNN用户使用Tensor Core 进行卷积的简便方法,并附有说明和示例代码。该文章为cuDNN应用提供了一些简单的规则:FP16数据规则,张量维数规则

2020-12-29 05:46:48 87

原创 cuDNN概述

cuDNN概述NVIDIACUDA®深度神经网络库(cuDNN)是GPU加速的用于深度神经网络的原语库。cuDNN为标准例程提供了高度优化的实现,例如向前和向后卷积,池化,规范化和激活层。全球的深度学习研究人员和框架开发人员都依赖cuDNN来实现高性能GPU加速。它使他们可以专注于训练神经网络和开发软件应用程序,而不必花时间在底层GPU性能调整上。cuDNN的加快广泛使用的深度学习框架,包括Caffe2,Chainer,Keras,MATLAB,MxNet,PyTorch和TensorFlow。已将cu

2020-12-28 06:55:41 194 1

原创 部署可扩展的目标检测管道:推理过程(下)

部署可扩展的目标检测管道:推理过程(下)融合感兴趣的目标可以被遮挡。有时只能看到目标的一小部分(少至几个像素)。• 图19.车辆和交通信号灯被遮挡。• 图20:阻塞了总线。• 图21:左侧的人被遮挡了。像YOLOv3这样的基于CNN的目标检测方法有一个缺点,即要求特征图生成对目标遮挡具有鲁棒性。而且,仅引发许多特征图并不能提高性能。已知诸如空间金字塔池之类的方法可以通过改进常规YOLOv3算法来更好地处理遮挡。照明条件照明的影响在像素级别上非常明显。• 图22. 白天。

2020-12-28 05:50:48 136

原创 图形数据库成为主流

图形数据库成为主流图形技术正成为主流,而知识库则处于领先地位。盖蒂每十年似乎都有其数据库。在1990年代,关系数据库成为主要的数据环境,它的易用性和表格格式使其成为不断增长的为数据网络提供动力的自然需求。虽然关系数据库仍然很强大,但2000年代见证了XML数据库的兴起,NoSQL(不需要将数据库以纯表格形式进行结构化)的想法开始流行起来。在2010年代,随着Hadoop作为数据平台的兴起和衰落,JSON数据库获得了广泛的关注。有鉴于此,有充分的证据表明图形数据库将成为2020年代的首选数据库,自从

2020-12-28 05:49:59 136

原创 GPU上的快速光谱图分区

GPU上的快速光谱图分区图形是用于对物理,生物,社会和信息系统中许多类型的关系和过程进行建模的数学结构。用于解决各种高性能计算和数据分析问题。对于网络分析,基因组学,社交网络分析和其他领域,大规模图形处理的计算需求,只有加速器才能提供的强大而高效的计算性能。NVIDIA通过CUDA 8引入了nvGRAPH,这是GPU加速图形算法的新库。它的第一个版本nvGRAPH 1.0支持3种关键图形算法(PageRank,单源最短路径)以及“单源最宽路径”),工程和研究团队已经在为将来的版本开发新的并行算法。许多应

2020-12-28 05:49:47 81

原创 目标检测推理部署:优化和部署

目标检测推理部署:优化和部署本文简要介绍了端对端推理管道的优化技术和部署。将在以下三个方面研究推理优化过程:硬件优化,软件优化和模型优化。推理优化的关键指标如下:• 吞吐量(未推理图像/秒)• 硬件成本• 存储• 功耗消耗• 质量图1.三轴推理优化。模型优化YOLOv3-416模型用作预训练模型时,在兼容的数据集上表现最佳。当用作基本模型时,需要调整超参数以更好地适合自定义数据集。下面列出了YOLOv3中需要考虑的体系结构选择和配置:• 全卷积基础架构的106层比YOLOv2的层更多

2020-12-28 05:49:22 129

原创 部署可扩展的目标检测管道:推理过程(上)

部署可扩展的目标检测管道:推理过程(上)基于YOLOv3的目标检测推理过程的所有代码都可以在eriklindernoren/PyTorch-YOLOv3 GitHub repo找到。为了进行审查,使用了完整版的YOLO配置文件。它包含有关网络,卷积层,三个YOLO检测层以及其它层及其属性的信息。使用PyTorch来解析配置文件并应用模型定义来实现网络。YOLOv3检测层默认情况下启用了CUDA。来自NGC软件中心的PyTorch CUDA提供了GPU优化的容器,并预先配置了cuDNN之类的库,以利用多个

2020-12-28 05:49:09 129

原创 图形数据标准化

图形数据标准化AWS,Google,Neo4j,Oracle。这些只是在W3C关于图形数据的Web标准化的W3C研讨会上代表的一些供应商,内容必然会促进数据管理中最热门的部分:Graph的采用。让许多供应商互相交谈,更不用说团结一致,这并非易事。增加学者和研究人员并不一定会使事情变得容易。现在,尝试将零散的社区和长期存在的未解决问题添加到组合中,将了解为什么到目前为止尚未实现图形数据标准化的图片。即将彻底改变一切的AI独角兽芯片在其核心具有计算图但是,这似乎即将改变,这对每个人来说都是个好消息。在过

2020-12-28 05:48:39 58

原创 知识图:从图和数据库中获取知识

知识图:从图和数据库中获取知识知识图到底是什么,以及关于它们的所有炒作是什么?如果想成为世界各地的Airbnbs,Amazon,Google和LinkedIn,那么学会区分真实的炒作,定义不同类型的图以及为用例选择合适的工具和数据库至关重要。知识图被炒作。现在可以正式地说这句话,因为Gartner在2018年对新兴技术的炒作周期中包括了知识图。尽管不必等待Gartner-将其宣布为“图表年”是在2018年的揭幕战。像在该领域活跃的任何人一样,看到了机遇和威胁:伴随着炒作而来的是混乱。知识图是真实的。至

2020-12-28 05:48:28 58 1

原创 图分析Rapids cuGraph

图分析Rapids cuGraph英伟达(Nvidia)建立的新的开源库可能是推进分析和使图形数据库更快的秘密要素。在Nvidia GPU上进行并行处理。Nvidia很久以前就不再只是“仅仅”一家硬件公司。由于其硬件是支持AI火爆的大部分计算运行的要素,因此Nvidia承担了为软件铺路的最后一步。Nvidia通过开发和发布库来实现这一点,软件开发人员和数据科学家可以使用这些库将GPU功能集成到他们的工作中。前提很简单:不是每个人都是并行性方面的专家或想成为一个并行性专家。并行编程很难。但是,这是利用

2020-12-28 05:48:11 32

原创 适用于AMD ROC GPU的Numba概述

适用于AMD ROC GPU的Numba概述Numba通过按照HSA执行模型将Python代码的受限子集直接编译到HSA内核和设备功能中,从而支持AMD ROC GPU编程。用Numba编写的内核似乎可以直接访问NumPy数组。术语以下列出了HSA编程主题中的几个重要术语:内核:由主机启动并在设备上执行的GPU功能设备功能:在设备上执行的GPU功能,只能从设备(即从内核或其他设备功能)调用需求本文档 介绍了使用ROC的要求。从本质上讲,需要AMD dGPU(iji, Polaris and V

2020-12-28 05:47:55 79

原创 在NVIDIA(CUDA,CUBLAS)和Intel MKL上快速实现BERT推理

在NVIDIA(CUDA,CUBLAS)和Intel MKL上快速实现BERT推理直接在NVIDIA(CUDA,CUBLAS)或Intel MKL上进行高度定制和优化的BERT推理,而无需tensorflow及其框架开销。仅支持BERT(转换器)。基准测试环境• Tesla P4• 28 * Intel® Xeon® CPU E5-2680 v4 @ 2.40GHz• Debian GNU/Linux 8 (jessie)• gcc (Debian 4.9.2-10+deb8u1) 4.9.

2020-12-27 05:53:21 245

原创 nvGraph-NVIDIA图形库

nvGraph-NVIDIA图形库数据分析是高性能计算的不断增长的应用。许多高级数据分析问题可以称为图形问题。反过来,当今许多常见的图形问题也可以称为稀疏线性代数。这是nvGraph的动机,它利用GPU的线性代数功能来处理大型图形分析。https://github.com/rapidsai/nvgraph该存储库包含NVIDIA CUDA Toolkit中的旧版nvGraph。目的是为CUDA Toolkit停止发布nvGraph的用户提供一种继续使用nvGraph的方法。尽管仍然接受错误报告,但并未

2020-12-27 05:53:10 170

原创 MIT Graph实践概述

MIT Graph实践概述Features功能• iCloud Support• Multi Local & Cloud Graphs• Thread Safe• Store Any Data Type, Including Binary Data• Relationship Modeling• Action Modeling For Analytics• Model With Graph Theory and Set Theory• Asynchronous /

2020-12-27 05:52:56 159 2

原创 编写HSA内核

编写HSA内核介绍HSA提供类似于OpenCL的执行模型。指令由一组硬件线程并行执行。在某种程度上,这类似于 单指令多数据(SIMD)模型,但具有这样的便利:细粒度调度对于程序员而言是隐藏的,而不是使用SIMD向量作为数据结构进行编程。在HSA中,编写的代码将同时由多个线程(通常成百上千个)执行。解决方案将通过定义网格,工作组 和工作项的线程层次结构进行建模。Numba的HSA支持提供了用于声明和管理此线程层次结构的工具。CUDA程序简介HSA执行模型类似于CUDA。HSA在ROC GPU上采用的

2020-12-27 05:52:30 158

原创 BEP 7:CUDA外部内存管理插件(下)

BEP 7:CUDA外部内存管理插件(下)Numba依赖向库中添加EMM插件的实现自然会使Numba成为库的依赖项,而以前可能没有。为了使依赖关系可选,如果需要的话,可以有条件地实例化并注册EMM插件,如下所示:try:import numbafrom mylib.numba_utils import MyNumbaMemoryManagernumba.cuda.cudadrv.driver.set_memory_manager(MyNumbaMemoryManager)except:pri

2020-12-27 05:52:18 135

原创 BEP 7:CUDA外部内存管理插件(上)

BEP 7:CUDA外部内存管理插件(上)背景和目标在CUDA阵列接口使得能够共享不同的Python之间的数据库的访问CUDA设备。但是,每个库都与其它库区别对待。例如:• Numba在内部管理内存以创建设备和映射的host阵列。• RAPIDS库(cuDF,cuML等)使用Rapids Memory Manager分配设备内存。• CuPy包括 用于设备和固定内存的内存池实现。该NBEP的目的是描述一个插件接口,该接口使Numba的内部存储器管理可由用户替换为外部存储器管理器。使用插件接口时,

2020-12-27 05:52:07 41

原创 缓存注意事项

缓存注意事项Numba支持将编译后的函数缓存到文件系统中,以供将来使用相同的函数。实施通过保存编译后的目标代码(可执行代码的ELF对象)来完成缓存。通过使用目标代码,由于不需要编译,因此缓存的函数具有最小的开销。缓存的数据保存在缓存目录下(请参阅NUMBA_CACHE_DIR)。缓存的索引存储在.nbi文件中,每个函数有一个索引,并且列出了为该函数编译的所有load重载签名。每load过载一个文件,目标代码被存储在具有.nbc扩展名文件中。两个文件中的数据都以pickle序列化。注意在Python

2020-12-27 05:51:56 135

原创 关于Numba的线程实现的说明

关于Numba的线程实现的说明由Numbaparallel目标执行的工作由Numba线程层执行。实际上,“线程层”是Numba内置库,可以执行所需的并发执行。在撰写本文时,有三个可用的线程层,每个线程层都通过不同的较低级别的host线程库实现。上thread线程和对于给定的应用/系统的thread线程的适当选择的更多信息可在发现 threading layer documentatio。以下各节要关注的相关信息是,执行并行线程库中的parallel_for函数。此功能的工作是协调和执行并行任务。本文引

2020-12-27 05:51:44 135

原创 Hashing散列注意事项

Hashing散列注意事项Numba支持内置功能hash(),只需__hash__()在提供的参数上调用成员函数即可 。这使得添加对新类型的哈希支持变得微不足道,这是因为扩展APIoverload_method()装饰器的应用程序,需要重载用于为注册到该类型的__hash__()方法的新类型,计算哈希值的函数。例如:from numba.extending import overload_method@overload_method(myType, ‘hash’)def myType_hash_ov

2020-12-27 05:51:31 113

原创 适用于CUDA GPU的Numba 随机数生成

Numba实时变量分析Numba使用引用计数进行垃圾回收,这是一种需要编译器配合的技术。Numba IR对必须插入decref的位置进行编码。这些位置通过实时变量分析确定。相应的源代码是https://github.com/numba/numba/blob/master/numba/interpreter.py中的_insert_var_dels() 方法。在Python语义中,一旦在函数内部定义了变量,该变量就一直存在,直到该变量被显式删除或函数作用域结束为止。但是,Numba会分析代码,以根据每个变

2020-12-27 05:51:16 98

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除