自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

吴建明wujianming_110117

吴建明专业博客wujianming_110117

  • 博客(107)
  • 问答 (8)
  • 收藏
  • 关注

原创 TensorFlow简单线性回归

TensorFlow简单线性回归将针对波士顿房价数据集的房间数量(RM)采用简单线性回归,目标是预测在最后一列(MEDV)给出的房价。波士顿房价数据集可从http://lib.stat.cmu.edu/datasets/boston处获取。直接从 TensorFlow contrib 数据集加载数据。使用随机梯度下降优化器优化单个训练样本的系数。实现简单线性回归的具体做法导入需要的所有软件包:在神经网络中,所有的输入都线性增加。为了使训练有效,输入应该被归一化,所以这里定义一个函数来归

2021-01-30 13:53:42 45

原创 TensorFlow csv读取文件数据(代码实现)

TensorFlow csv读取文件数据(代码实现)大多数人了解 Pandas 及其在处理大数据文件方面的实用性。TensorFlow 提供了读取这种文件的方法。前面章节中,介绍了如何在 TensorFlow 中读取文件,本文将重点介绍如何从 CSV 文件中读取数据并在训练之前对数据进行预处理。将采用哈里森和鲁宾菲尔德于 1978 年收集的波士顿房价数据集(http://lib.stat.cmu.edu/datasets/boston),该数据集包括 506 个样本场景,每个房屋含 14 个特征:

2021-01-30 13:24:02 53

原创 TensorFlow优化器及用法

TensorFlow优化器及用法函数在一阶导数为零的地方达到其最大值和最小值。梯度下降算法基于相同的原理,即调整系数(权重和偏置)使损失函数的梯度下降。在回归中,使用梯度下降来优化损失函数并获得系数。本文将介绍如何使用 TensorFlow 的梯度下降优化器及其变体。按照损失函数的负梯度成比例地对系数(W 和 b)进行更新。根据训练样本的大小,有三种梯度下降的变体:Vanilla 梯度下降:在 Vanilla 梯度下降(也称作批梯度下降)中,在每个循环中计算整个训练集的损失函数的梯度。该方法可能很

2021-01-30 08:52:15 58

原创 TensorFlow损失函数

TensorFlow损失函数正如前面所讨论的,在回归中定义了损失函数或目标函数,其目的是找到使损失最小化的系数。本文将介绍如何在 TensorFlow 中定义损失函数,并根据问题选择合适的损失函数。声明一个损失函数需要将系数定义为变量,将数据集定义为占位符。可以有一个常学习率或变化的学习率和正则化常数。在下面的代码中,设 m 是样本数量,n 是特征数量,P 是类别数量。这里应该在代码之前定义这些全局参数:在标准线性回归的情况下,只有一个输入变量和一个输出变量:在多元线性回归的情况下,输入变量不

2021-01-30 08:25:06 51

原创 回归算法分类,常用回归算法解析

回归算法分类,常用回归算法解析回归是数学建模、分类和预测中最古老但功能非常强大的工具之一。回归在工程、物理学、生物学、金融、社会科学等各个领域都有应用,是数据科学家常用的基本工具。回归通常是机器学习中使用的第一个算法。通过学习因变量和自变量之间的关系实现对数据的预测。例如,对房价估计时,需要确定房屋面积(自变量)与其价格(因变量)之间的关系,可以利用这一关系来预测给定面积的房屋的价格。可以有多个影响因变量的自变量。因此,回归有两个重要组成部分:自变量和因变量之间的关系,以及不同自变量对因变量影响的强度

2021-01-30 08:07:22 60

原创 TensorFlow常用Python扩展包

TensorFlow常用Python扩展包TensorFlow 能够实现大部分神经网络的功能。但是,这还是不够的。对于预处理任务、序列化甚至绘图任务,还需要更多的 Python 包。下面列出了一些常用的 Python 包:• Numpy:这是用 Python 进行科学计算的基础包。它支持n维数组和矩阵的计算,还拥有大量的高级数学函数。这是 TensorFlow 所需的必要软件包,因此,使用 pip install tensorflow 时,如果尚未安装 Numpy,它将被自动安装。• Matplol

2021-01-30 07:40:44 39

原创 深度学习与TensorFlow

深度学习与TensorFlowDNN(深度神经网络算法)现在是AI社区的流行词。最近,DNN 在许多数据科学竞赛/Kaggle 竞赛中获得了多次冠军。自从 1962 年 Rosenblat 提出感知机(Perceptron)以来,DNN 的概念就已经出现了,而自 Rumelhart、Hinton 和 Williams 在 1986 年发现了梯度下降算法后,DNN 的概念就变得可行了。直到最近 DNN 才成为全世界 AI/ML 爱好者和工程师的最爱。主要原因在于现代计算能力的可用性,如 GPU 和 Te

2021-01-30 07:34:10 51

原创 TensorFlow指定CPU和GPU方法

TensorFlow指定CPU和GPU方法TensorFlow 支持 CPU 和 GPU。它也支持分布式计算。可以在一个或多个计算机系统的多个设备上使用 TensorFlow。TensorFlow 将支持的 CPU 设备命名为“/device:CPU:0”(或“/cpu:0”),第 i 个 GPU 设备命名为“/device:GPU:I”(或“/gpu:I”)。如前所述,GPU 比 CPU 要快得多,因为它们有许多小的内核。然而,在所有类型的计算中都使用 GPU 也并不一定都有速度上的优势。有时,比起

2021-01-30 07:17:07 62

原创 主成分分析法(PCA)原理和步骤

主成分分析法(PCA)原理和步骤主成分分析(Principal Component Analysis,PCA)是一种多变量统计方法,它是最常用的降维方法之一,通过正交变换将一组可能存在相关性的变量数据,转换为一组线性不相关的变量,转换后的变量被称为主成分。可以使用两种方法进行 PCA,分别是特征分解或奇异值分解(SVD)。准备工作PCA 将 n 维输入数据缩减为 r 维,其中 r<n。简单地说,PCA 实质上是一个基变换,使得变换后的数据有最大的方差,也就是通过对坐标轴的旋转和坐标原点的平移,

2021-01-30 06:50:30 576 1

原创 TensorFlow XLA加速编译器

TensorFlow XLA加速编译器加速线性代数器(Accelerated linear algebra,XLA)是线性代数领域的专用编译器。根据 https://www.tensorflow.org/performance/xla/,它仍处于实验阶段,用于优化 TensorFlow 计算。XLA 可以提高服务器和移动平台的执行速度、内存使用率和可移植性。提供了双向 JIT(Just In Time)编译或 AoT(Ahead of Time)编译。使用 XLA,可以生成平台相关的二进制文件(针对大量

2021-01-30 06:18:49 57

原创 使用CUDA Warp-Level级原语

使用CUDA Warp-Level级原语NVIDIA GPU以SIMT(单指令,多线程)的方式执行称为warps 的线程组。许多CUDA程序通过利用warp执行来实现高性能。本文将展示如何使用cuda9中引入的原语,使warp级编程安全有效。Figure 1: The Tesla V100 Accelerator with Volta GV100 GPU. SXM2 Form Factor.图1:Volta GV100 GPU的特斯拉V100加速器。SXM2外形尺寸。Warp-level Prim

2021-01-29 08:42:28 72

原创 地理围栏API服务开发

地理围栏API服务开发要使用华为地理围栏服务API,需要确保设备已经下载并安装了HMS Core(APK),并将Location Kit的SDK集成到项目中。指定应用权限• 如果需要使用地理围栏服务API,需要在“AndroidManifest.xml”文件中申请ACCESS_FINE_LOCATION权限和ACCESS_COARSE_LOCATION权限:a. b. • 在Android Q版本中,需要在“AndroidManifest.xml”文件中申请ACCESS_BACKGROUND_L

2021-01-29 07:21:20 67

原创 活动识别API服务开发

活动识别API服务开发要使用华为活动识别服务API,需要确保设备已经下载并安装了HMS Core(APK),并将Location Kit的SDK集成到项目中。指定应用权限• 在Android Q以下版本使用活动识别需要在“AndroidManifest.xml”文件中配置以下权限:a. • 在Android Q及以上版本中,需要在“AndroidManifest.xml”文件中申请以下权限:. 说明以上活动识别相关权限属于危险权限,使用时需要动态申请。注册静态广播示例代码中活动识别服务的

2021-01-29 07:17:26 63

原创 定位服务API案例

定位服务API案例要使用定位服务API,需要确保设备已经下载并安装了HMS Core服务组件,并将Location Kit的SDK集成到项目中。指定应用权限Android提供了两种位置权限: ACCESS_COARSE_LOCATION(粗略的位置权限)和ACCESS_FINE_LOCATION(精确的位置权限)。需要在“AndroidManifest.xml”文件中申请权限:在Android Q版本中,如果需要应用程序在后台执行时也具备持续定位能力,需要在“AndroidManife

2021-01-29 07:11:50 68

原创 高精地图定位

高精地图定位业务简介定位服务(Location Kit)采用卫星导航系统(Global Navigation Satellite System,以下简称GNSS)、Wi-Fi、基站等多途径的混合定位模式进行定位,赋予的应用快速、精准地获取用户位置信息的能力,构建全球定位服务能力,助力发展全球业务。当前定位服务的主要能力包含三个部分:融合定位、活动识别和地理围栏,可以根据自己的需求,调用相应的能力。• 融合定位:结合GNSS、Wi-Fi和基站位置数据,为提供一套简单易用的API,方便快速获取设备位置信息

2021-01-29 07:00:53 63

原创 HiCar SDK概述

HiCar SDK概述HUAWEI HiCar SDK 是 HUAWEI HiCar(以下简称 HiCar )为汽车硬件设备提供的软件开发工具包,为汽车硬件厂商接入 HiCar 提供应用 API 接口用于实现厂商 HMI 应用,提供设备 API 接口用于对接硬件设备。图1HUAWEI HiCar SDK 集成架构汽车硬件厂商可参考汽车硬件接入流程了解如何集成 HiCar。...

2021-01-29 06:44:10 75

原创 HiCar人-车-家全场景智慧互联

HiCar人-车-家全场景智慧互联(HUAWEI HiCar Smart Connection)解决方案,具备如下特点:• 安全交互:以安全为前提的极简交互(Safety)• 无感互联:手机/IoT 设备和汽车无感全互联(Smart Connection)• 硬件互助:手机和汽车资源共享(Resource Sharing)• 生态共享:用户体验在车内、车外无缝流转(Seamless Experience)从汽车来说,汽车座舱有车载中控大屏、仪表/HUD 多屏的显示能力,有麦克风/喇叭等车载环境更

2021-01-29 06:35:47 69

原创 AIoT开放平台及应用

AIoT开放平台及应用阿里AIoT开放平台,是阿里云IoT面向开发者的能力接入渠道,开发者可以在这里完成能力的申请、开通、部署、配置和集成开发等一些列工作。这些能力并不的独立交付,而是通过关联到行业平台实例的形式进行交付,以实现相同能力在不同平台实例中的隔离和权限控制。开放平台整体逻辑及角色对应,如下图所示:使用流程开放平台及行业能力的开通、配置、开发、使用流程。开放平台的使用流程,分成两大部分:行业平台的实例化过程和能力的使用流程。整体使用流程平台入驻:用户在使用开放平台之前,会要求用户进

2021-01-28 09:05:15 55

原创 AI+IoT+电池应用

AI+IoT+电池应用AIoT电池突破你的想象将行业领先的电池电化学技术与前沿的能源物联网最佳实践相结合,利用智能物联技术开展电池全生命周期的管理优化和交叉领域的协同应用,解锁动力电池全生命周期价值。AIoT手段提升产品研发效率行驶数据积累,通过AI算法优化原材配方,数字化解构电池使用工况,大数据分析每个失效的机理,作为AIoT数据的输入端。C利用电化学仿真优化加速电芯设计节奏,预测不同工作环境下的电池表现,在提升研发效率,缩短开发周期同时,促进新一代产品研发。可追溯管理系统海量数据节点形成

2021-01-28 08:32:08 65

原创 智能物联网(AIoT,2020年)(下)

智能物联网(AIoT,2020年)(下)12工业物联网是AIoT在工业领域第一战场工业物联网分为感知、决策、执行,OS与软件是大脑+神经13工业场景下一步如何使用AIoT不止工业物联网:用人工智能提升柔性生产的顶层设计14城市场景的AIoT集中在监管、调度、公共服务领域15 城市:人类智慧+机器智能的高度互动体AIoT赋予智慧城市中台毛细血管级感知与响应能力16 城市AIoT的投入与发展从智慧到智能,以人工智能提升城市运转效率中国AloT发展趋势AIoT撬动新玩法

2021-01-28 07:41:53 181 1

原创 智能物联网(AIoT,2020年)(中)

智能物联网(AIoT,2020年)(中)05 中国AIoT产业图谱06 中国AIoT商业模式标准程度越低人力和时间成本投入越多,2B2C模式附加值高07 中国AIoT玩家分布简介四类玩家,优势与策略各异08 建筑人居类场景的AIoT通过单品+系统联动场景,向“管家模式”迈进增强安防措施、改善居住体验、运营降本增效是场景共性09 建筑人居:AIoT实现人与环境自主适应以智能端为入口,配合平台完成感知、分析与联动10 中国AIoT住宅与人居的发展现状超半数智慧人居住

2021-01-28 07:22:06 75

原创 智能物联网(AIoT,2020年)(上)

智能物联网(AIoT,2020年)(上)中国AloT的概念与现状01智能物联网(AIoT)定义人工智能与物联网的协同应用02 AIoT2025产业瞭望:家庭AI管家智能家居交互方式无感化,跨终端无缝体验03 AIoT2025产业瞭望:建筑人居人居关怀使五千万人居住和工作体验提升04 AIoT2025产业瞭望:工业制造人机协同使7万工厂、630万制造从业者受益05 AIoT2025产业瞭望:智慧城市AIoT能够广泛应用于城市中普遍存在的各类终端设备上06 AIoT整体架构

2021-01-28 06:58:49 94 1

原创 AIoT 2020 年分析

AIoT 2020 年分析2020年,从智能手机到智能手表,从智能摄像头到智能汽车,随着AI、芯片、云计算、通信等基础技术的逐渐成熟,又一个行业来到了历史性的时刻——AIoT。从“万物互联”到“万物智联”所谓的万物智联,或许正如写出《数字化生存》的麻省理工教授尼葛洛庞帝所言,“物联网时代的创新应该是往微波炉里放一只鸡,微波炉自己知道如何烹饪这只鸡,而不是可以通过手机打开微波炉的开关”。在万物智联的场景中,设备与设备间将互联互通,形成数据交互、共享的新生态。在这个过程中,终端不仅需要有更加高效的计算能

2021-01-28 06:21:24 269

原创 TensorFlow解析常量、变量和占位符

TensorFlow解析常量、变量和占位符最基本的 TensorFlow 提供了一个库来定义和执行对张量的各种数学运算。张量,可理解为一个 n 维矩阵,所有类型的数据,包括标量、矢量和矩阵等都是特殊类型的张量。TensorFlow 支持以下三种类型的张量:常量:常量是其值不能改变的张量。变量:当一个量在会话中的值需要更新时,使用变量来表示。例如,在神经网络中,权重需要在训练期间更新,可以通过将权重声明为变量来实现。变量在使用前需要被显示初始化。另外需要注意的是,常量存储在计算图的定义中,每次加载

2021-01-27 10:14:39 30 1

原创 TensorFlow编程结构

TensorFlow编程结构TensorFlow 与其他编程语言非常不同。首先通过将程序分为两个独立的部分,构建任何拟创建神经网络的蓝图,包括计算图的定义及其执行。起初这对于传统程序员来说看起来很麻烦,但是正是图定义和执行的分开设计让 TensorFlow 能够多平台工作以及并行执行,TensorFlow 也因此更加强大。计算图:是包含节点和边的网络。本节定义所有要使用的数据,也就是张量(tensor)对象(常量、变量和占位符),同时定义要执行的所有计算,即算子操作对象(Operation Objec

2021-01-27 09:49:06 36

原创 对端边缘云网络计算模式:透明计算、移动边缘计算、雾计算和Cloudlet

对端边缘云网络计算模式:透明计算、移动边缘计算、雾计算和Cloudlet概要将数据发送到云端进行分析是过去几十年的一个突出趋势,推动了云计算成为主流计算范式。然而,物联网时代设备数量和数据流量的急剧增加,给容量有限的互联网和不可控的服务延迟带来了巨大的负担。单独使用云计算很难满足物联网应用对延迟敏感和上下文感知的服务需求。面对这些挑战,计算范式正在从集中式云计算转向分布式边缘计算。一些新的计算模式,包括透明计算、移动边缘计算、Fog计算和Cloudlet,已经出现,以利用网络边缘的分布式资源提供及时和上

2021-01-27 09:30:48 59 1

原创 SystemML大规模机器学习,优化算子融合方案的研究

SystemML大规模机器学习,优化算子融合方案的研究摘要许多大规模机器学习(ML)系统允许通过线性代数程序指定定制的ML算法,然后自动生成有效的执行计划。在这种情况下,优化的机会融合基本算子的熔合链的算子是无处不在的。这些机会包括(1)更少的物化中间表示(2)更少的输入数据扫描,以及(3)利用算子链上的稀疏性。自动算子融合消除了手写的需要融合运算符并显著提高复杂的或以前看不见的算子链。然而,现有的融合启发式算法,很难找到好的融合方法。复杂DAG计划或局部分布式算子的混合计划。本文提出了

2021-01-27 08:19:09 51

原创 显示技术举例

宽视角SFT显示技术技术介绍:SFT即Super-Fine TFT,增大了可视角度,丰富了色彩,提高了面板的透过率,并减小了响应时间。技术优点:超宽的视角;双视角显示技术技术介绍:屏幕被分成可独立工作的两部分,是显示器像素发出的光通过光栅后分成两部分,在不同方向上可以看到不同的画面。例如当主驾驶员观看导航信息的同时副驾驶员可观看娱乐节目。技术优点:分离角度和可视角度由单个视点的亮度曲线所决定;分离角度和可视角度是关键参数,优化设计后车载显示适用;平视显示器HUD(Head-U

2021-01-27 06:53:51 57

原创 立体显示与BCN双稳态手性向列相

立体显示与BCN双稳态手性向列相狭缝光栅立体显示技术介绍:人的左右眼间距大约是65MM,左右眼透过视差光栅看到不同的视角图像,经大脑融合形成立体视觉。技术优点:2D/3D可切换;低成本;制程容易;良好的立体显示效果;双稳态手性向列相技术介绍:BCN采用SSCT技术。在无外加电场条件下有两种稳定状态,无需使用偏光片,在日光和环境光的条件下仍能保持优良的可视性和色彩效果。技术优点:如同真实纸质的显示效果高对比度;极低的功耗、轻薄外形;全视角;柔性;...

2021-01-27 06:42:57 52

原创 Harmony生命周期

Harmony生命周期系统管理或用户操作等行为,均会引起Page实例在其生命周期的不同状态之间进行转换。Ability类提供的回调机制能够让Page及时感知外界变化,从而正确地应对状态变化(比如释放资源),这有助于提升应用的性能和稳健性。Page生命周期回调Page生命周期的不同状态转换及其对应的回调,如图1所示。图1 Page生命周期• onStart()当系统首次创建Page实例时,触发该回调。对于一个Page实例,该回调在其生命周期过程中仅触发一次,Page在该逻辑后将进入INACTIV

2021-01-27 06:19:00 50

原创 HarmonyOS技术特性

HarmonyOS技术特性硬件互助,资源共享多种设备之间能够实现硬件互助、资源共享,依赖的关键技术包括分布式软总线、分布式设备虚拟化、分布式数据管理、分布式任务调度等。分布式软总线分布式软总线是手机、平板、智能穿戴、智慧屏、车机等分布式设备的通信基座,为设备之间的互联互通提供了统一的分布式通信能力,为设备之间的无感发现和零等待传输创造了条件。开发者只需聚焦于业务逻辑的实现,无需关注组网方式与底层协议。分布式软总线示意图见图1。典型应用场景举例:• 智能家居场景:在制作粉蒸肉时,手机可以通过碰一碰

2021-01-26 06:53:42 64

原创 HarmonyOS系统概述

HarmonyOS系统概述系统定位HarmonyOS是一款“面向未来”、面向全场景(移动办公、运动健康、社交通信、媒体娱乐等)的分布式操作系统。在传统的单设备系统能力的基础上,HarmonyOS提出了基于同一套系统能力、适配多种终端形态的分布式理念,能够支持手机、平板、智能穿戴、智慧屏、车机等多种终端设备。 Play Video• 对消费者而言,HarmonyOS能够将生活场景中的各类终端进行能力整合,可以实现不同的终端设备之间的快速连接、能力互助、资源共享,匹配合适的设备、提供流畅的全场景体验。•

2021-01-26 06:40:31 61

原创 GPU 硬件虚拟化Hardware Virtualization

GPU 硬件虚拟化Hardware VirtualizationPrinciples一个物理GPU可以虚拟化为多个vGPUs。VMs可以绑定到vGPUs以直接访问一些物理GPU资源。Featureso 基于NVIDIA网格卡提供GPU虚拟化,提高图形应用体验。GPU virtualization is provided based on NVIDIA GRID cards to improve the graphics application experience.o vGPU资源管理和调度支持

2021-01-26 04:49:42 94

原创 Ascend Pytorch算子功能验证

Ascend Pytorch算子功能验证编写测试用例以add算子为例,测试脚本文件命名为:add_testcase.py。以下示例仅为一个简单的用例实现,具体算子的实现,需要根据算子定义进行完整的覆盖才能保证功能的基本正确。引入依赖库。import torchimport numpy as npimport sysimport copyfrom util_test import compare_res说明:其中,util_test为测试框架提供的文件,详细实现参考 附录->测试代

2021-01-26 04:49:19 86

原创 Ascend Pytorch算子适配层开发

Ascend Pytorch算子适配层开发适配方法找到和PyTorch算子功能对应的NPU TBE算子,根据算子功能计算出输出Tensor的size,再根据TBE算子原型构造对应的input/output/attr,传递给ACL完成TBE算子的执行。说明:TBE算子实现的源文件存放路径由开发套件包Toolkit的安装方式决定:• 若使用root用户安装,则存放在:/usr/local/Ascend/ascend-toolkit/latest/opp/op_impl/built-in/ai_core

2021-01-25 07:06:16 71

原创 Ascend昇腾计算

Ascend昇腾计算Ascend昇腾计算,是基于昇腾系列处理器构建的全栈AI计算基础设施及应用,包括昇腾系列芯片、系列硬件、芯片使能、AI框架、应用使能等。华为Atlas人工智能计算解决方案,基于昇腾系列AI处理器,通过模块、板卡、小站、服务器、集群等丰富的产品形态,打造面向“端、边、云”的全场景AI基础设施方案,涵盖数据中心解决方案、智能边缘解决方案,覆盖深度学习领域推理和训练全流程。图1. Ascend 系统架构Ascend算子加速方案特性及优点昇腾AI处理器的加速实现方式是以各种算子为粒度进

2021-01-25 06:57:32 73

原创 使用Runtime执行推理(C++)

使用Runtime执行推理(C++)概述通过MindSpore Lite模型转换后,需在Runtime中完成模型的推理执行流程。本教程介绍如何使用C++接口编写推理代码。Runtime总体使用流程如下图所示:包含的组件及功能如下所述:• Model:MindSpore Lite使用的模型,通过用户构图或直接加载网络,来实例化算子原型的列表。• Lite Session:提供图编译的功能,并调用图执行器进行推理。• Scheduler:算子异构调度器,根据异构调度策略,为每一个算子选择合适的k

2021-01-25 06:16:12 75 2

原创 HiLink & LiteOS & IoT芯片 让IoT开发简单高效

HiLink & LiteOS & IoT芯片 让IoT开发简单高效华为HiLink & LiteOS & IoT芯片使能三件套,让IoT开发更简单高效。下一代智能手机将会融合车、家、办公等场景,让消费者的全场景智慧化体验无处不在。与此同时,随着全球可连接设备数和人均设备数的快速增加,IoT连接技术也已准备就绪,各类无线、有线、窄带、宽带技术让千亿级设备连接成为可能。华为开发者大会智能家居分论坛,华为消费者业务IoT产品线11位智能家居领域专家就华为全场景智能家居业务战略

2021-01-25 06:15:55 87 1

原创 HiCar基本功能介绍

HiCar基本功能介绍基本概述一方面,基于操作系统超强的分布式能力,HUAWEI HiCar通过手机和汽车之间的连接,基于三层标准与能力,构建手机和汽车互助资源池,把手机的服务生态延伸到车内,实现“手机+车机”人机交互最优体验,“手机+车机+N端”互联互通、无感连接&服务无缝流转,以及最优硬件资源带来最优体验。另一方面,HUAWEI HiCar构建一站式开发的开放生态平台,使能伙伴持续创造价值,确保消费者出行体验更加智慧和安全,以及体验的开发与创新更加高效。华为邀请来自中国汽车技术研究中心有

2021-01-25 06:15:39 495 2

原创 HiCar技术概述

HiCar技术概述HUAWEI HiCar(以下简称 HiCar)是华为提供的人-车-家全场景智慧互联(HUAWEI HiCar Smart Connection)解决方案,具备如下特点:• 安全交互:以安全为前提的极简交互(Safety)• 无感互联:手机/IoT 设备和汽车无感全互联(Smart Connection)• 硬件互助:手机和汽车资源共享(Resource Sharing)• 生态共享:用户体验在车内、车外无缝流转(Seamless Experience)从汽车来说,汽车座舱有车

2021-01-25 06:15:20 95

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除