自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

吴建明wujianming_110117

吴建明专业博客wujianming_110117

  • 博客(57)
  • 问答 (8)
  • 收藏
  • 关注

原创 光速对齐时间序列

光速对齐时间序列“时间序列是无处不在且越来越流行的数据类型[…]”。几乎任何增量测量的信号, 沿时间轴还是线性有序集,可以视为时间序列。示例包括心电图,温度或电压测量,音频,服务器日志,还有重量级数据,例如视频和时间分辨的MRI体积。对数量不断增加的时间序列数据进行有效而精确的处理,对于每位数据科学家都至关重要。介绍了RapidAligner –一个CUDA加速库,可使用以下三种流行的锁定步骤对统一采样的本地对齐方式,在一个非常长的时间序列流(主题)中,对齐一个短时间序列片段(查询)。时间序列:滚

2021-04-30 12:13:30 47 3

原创 NVIDIA深度架构

NVIDIA深度架构本文介绍A100 GPU,NVIDIA Ampere架构GPU的重要新功能。现代云数据中心中运行的计算密集型应用程序的多样性推动了NVIDIA GPU加速的云计算的爆炸式增长。此类密集型应用程序包括AI深度学习(DL)训练和推理,数据分析,科学计算,基因组学,边缘视频分析和5G服务,图形渲染,云游戏等。从扩展的AI训练和科学计算,到扩展的推理应用程序,再到支持实时对话式AI,NVIDIA GPU提供了必要的功能,加速当今云数据中心中运行的众多复杂且不可预测的工作负载。NVIDIA

2021-04-30 11:27:43 43 2

原创 视觉智能400平台

视觉智能400平台基于Qualcomm QCS605处理器。Qualcomm®Vision Intelligence 400平台专门用于将功能强大的视觉计算和边缘计算(用于机器学习),适配虚拟现实和运动相机应用程序。该平台具有高通公司(Qualcomm Technologies)的第一个系列芯片系统(SoC)系列,该系列芯片是专门为IoT设计的,采用先进的10纳米工艺。Vision Intelligence 400平台旨在支持出色的电源和热效率。Qualcomm Vision Intelligenc

2021-04-30 06:46:19 79

原创 Linux BSP非标准HDMI分辨率

Linux BSP非标准HDMI分辨率Intrinsyc公司发布了它的一个新的Linux BSP软件的发布 打开-Q™820 开发套件基于Linux内核版本。支持的软件功能包括HDMI输出,可以支持标准HDMI显示面板以及非标准HDMI显示面板。本文将介绍如何连接并与Intrinsyc公司的使用配置各种HDMI面板打开-Q™820 的Linux BSP。HDMI (高清晰度多媒体接口)是一个 小号TANDARD使用d到携带高质量的音频数据和高清晰度的消费类电子产品的视频格式。开放-Q™820从Intr

2021-04-30 06:18:44 22

原创 物联网安全Wi-Fi漫游

物联网安全Wi-Fi漫游根据Statistica的最新报告,到2021年,全球正在使用的Wi-Fi®连接设备的数量预计将增长到222亿。这种Wi-Fi的广泛使用不仅包括消费者的Wi-Fi使用,而且还包括工业物联网(IIoT)中的Wi-Fi使用情况。事实上,根据其2019年超越概念证明:扩展工业物联网 报告,全球管理咨询公司贝恩公司(Bain&Company)预测,到2021年,物联网将增长到200B美元的市场。贝恩报告援引IIoT中Wi-Fi的主要采用障碍是实施风险,包括技术专长和集成,包括系统和数据过

2021-04-30 05:44:46 117

原创 梯度下降优化算法

梯度下降优化算法梯度下降是常用的优化方式,具体的算法有:• 梯度下降法o 批梯度下降(Batch Gradient Descent, BGD)o 随机梯度下降(Stochastic Gradient Decent, SGD)o 小批量梯度下降(Mini-Batch Gradient Decent, MBGD)• 梯度下降优化o 动量梯度下降(Gradient Descent with Momentum)o 均方根支(Root Mean Square Prop, RMSprop)o 自适应矩

2021-04-29 06:28:48 117 2

原创 SLAM图优化g2o

SLAM图优化g2o图优化g2o框架图优化的英文是 graph optimization 或者 graph-based optimization, “图”其实是数据结构中的graph。凸优化的英文是 convex optimization,这里的“凸”其实是凸函数的意思,所以单从英文就能区分开。图优化有什么优势?SLAM的后端一般分为两种处理方法,一种是以扩展卡尔曼滤波(EKF)为代表的滤波方法,一种是以图优化为代表的非线性优化方法。SLAM研究的主流热点几乎都是基于图优化。滤波方法尤其是EKF方

2021-04-29 06:12:04 96

原创 AI人工智能天机芯芯片

AI人工智能天机芯芯片描述2019年刊出的《自然》封面文章,展示了清华大学类脑计算研究中心团队研发的新型人工智能芯片“天机芯(Tianjic)”。这是世界首款异构融合类脑芯片,实现了中国在芯片和人工智能两大领域《自然》论文的零突破。中国造的“天机芯”作为世界首款异构融合类脑芯片,究竟有何突破?芯片是人工智能系统的“大脑”。现有人工智能技术(AI)存在两种主流“大脑”:一种是支持人工神经网络的深度学习加速器,基于研究“电脑”的计算机科学,让计算机运行机器学习算法;另一种是支持脉冲神经网络的神经形态芯片

2021-04-28 06:10:15 108

原创 Tengine MLOps概述

Tengine MLOps概述大幅提高产业应用从云向边缘迁移的效率MLOps Cloud Native 聚焦于提升云端的运营过程效率MLOps Edge Native 聚焦于解决边缘应用开发及异构部署效率核心价值专为AIoT场景设计,同时具有跨芯片平台、异构调度、芯片底层加速、超轻量无依赖、完整开发移植部署工具链几大特点。Tengine兼容多种操作系统和深度学习算法框架。简化和加速面向场景的AI算法在嵌入式边缘设备上快速迁移,以及实际应用部署落地。...

2021-04-27 05:57:35 135

原创 Tengine Framework基础

Tengine Framework基础最受开发者喜爱的边缘AI计算框架Tengine是OPEN AI LAB推出的自主知识产权的边缘AI计算框架,致力于解决AIoT产业链碎片化问题,加速AI产业化落地。Tengine兼容多种操作系统和深度学习算法框架,简化和加速面向场景的AI算法在嵌入式边缘设备上快速迁移,以及实际应用部署落地,可以十倍提升基础开发的效率。Tengine于2017年在GitHub( https://github.com/OAID/Tengine )开源。一方面可以通过异构计算技术同

2021-04-27 05:46:31 134

原创 Tengine Web服务器概述

Tengine Web服务器概述Tengine是由淘宝网发起的Web服务器项目。在Nginx的基础上,针对大访问量网站的需求,添加了很多高级功能和特性。目的是打造一个高效、安全的Web平台。发展Tengine的性能和稳定性已经在大型的网站如淘宝网,天猫商城等得到了很好的检验。最终目标是打造一个高效、稳定、安全、易用的Web平台。从2011年12月开始,Tengine成为一个开源项目。由Tengine团队开发和维护。Tengine团队的核心成员来自于淘宝、搜狗等互联网企业。功能以下沿引项目主页

2021-04-27 05:34:14 115

原创 华为MDC软件架构

华为MDC软件架构平台软件零层逻辑架构如下图,由基础层、功能层、应用层和服务层组成。零层逻辑架构从平台软件一层逻辑架构可以看出,MDC用了华为自研的越影操作系统、兼容Autosar标准的软件中间件,提供完整的工具链,并且考虑了功能安全和信息安全。一层逻辑架构在2019年第四季度,MDC使用基于鲲鹏920s和升腾310硬件的第一代软件架构。MCU软件用于诊断和健康监控等,鲲鹏920软件分为自动驾驶功能域和数据处理域,感知软件则放在了具备AI超强功能的升腾310。第一代版本软件部署架构示意图

2021-04-26 06:22:44 79

原创 4D毫米波雷达Radar

4D毫米波雷达Radar围绕雷达、激光雷达、高精定位等新一代传感器技术将会进入量产周期。自动驾驶公司的竞争,在传感器配置上坦白说并没有太多差异化。除了车载激光雷达属于近几年的产物,类似摄像头、毫米波雷达、GPS、IMU等等都只是一些非革命性的升级换代。传感器还不够成熟,不足以支持未来量产的完全自动驾驶汽车,包括L3等高等级自动驾驶。传统的毫米波雷达,自动驾驶的主要传感器,主要弱势是其有限的角分辨性能,不过全天候的运行条件,保证了其重要角色之一。这些毫米波雷达,具有较高的速度和距离分辨率,能够很容

2021-04-25 06:14:55 135

原创 MindSpore循环神经网络

MindSpore循环神经网络一. 神经网络的组成神经元模型:首先简单的了解以下构成神经网络的最基础单元:神经元。每个神经元与其它神经元相连,处于激活状态时,就会向相连的神经元发送相应信号。从而改变其它神经元的状态。如果某个神经元的信号超过某个阈值。那么将被激活,再接着发送给其它神经元。如图1所示:图1:神经元结构神经网络的任何神经元都可以表述为上述的形式。该单元主要由输入变量、带权参数和激活函数组成。首先是x1,x2,x3带权重的输入变量,该变量的取值来自前面一层所有变量与权重的乘积,然后再求和

2021-04-24 21:30:08 43

原创 构建编译TVM方法

构建编译TVM方法本文提供如何在各种系统上构建和安装TVM包的说明。它包括两个步骤:首先从C代码构建共享库( libtvm.so for linux, libtvm.dylib for macOS and libtvm.dll for windows)。语言包的设置(例如Python包)。TVM源码下载链接https://github.com/apache/tvm/Developers: Get Source from GithubYou can also choose to clone

2021-04-24 06:30:12 68

原创 芯片工具链概述

芯片工具链概述自主可控的大趋势自主可控,是国内集成电路的必由之路,而指令集架构作为芯片产业链的“最上游”,实现自主可控的关键环节。芯片指令集架构分为复杂指令集(CISC)和精简指令集(RISC)。复杂指令集的代表是Intel的x86架构;精简指令集代表是ARM和RISC-V。随着移动端设备的普及,精简指令集相对于复杂指令集的优势越来越明显。英伟达收购ARM,国内外引起了轩然大波,业内开始担忧ARM被收购后会加重产业链的垄断程度。在当前背景下,业界对开放的精简指令集架构RISC-V的重视达到了前所未有的

2021-04-23 06:19:14 61

原创 前端软件开发体系

前端软件开发体系程序员知识框架前端工程师的技能模型分成三层,最底层的是三大能力「编程能力」、「架构能力」、「工程能力」,第二层是「前端知识」,最上面的则是「领域知识」。知识框架同样也是分为 3 层,最底层应该是「基础知识」,第二层是「工程知识」,最顶层则是「领域知识」。基础知识程序员最首要的应该是会写程序,比如设计一个控制家庭 IoT 的程序,或者写一个简单网页,处理一些业务的日志。想要做好这些事情就需要对应的基础知识,这些知识是作为工程师都应该具备的。前端知识首当其冲的就是学习各种编程语

2021-04-23 06:00:32 116 1

原创 人工智能AI Boosting HMC Memory Chip

人工智能AI Boosting HMC Memory ChipInnosilicon的AI Boosting HMC存储芯片适用于高速,高带宽和高性能存储领域,例如AI边缘,数据中心,自动化等。HMC存储器嵌入了AI操作指令,实现了边端现场计算和存储。采用不同的Serdes技术将数据传输从PCB板线距离扩展到远场和近场传输。此外,芯片基于HMC2.1(混合内存立方体)协议,在芯片上集成了GDDR6 IP和Samsung或Micron的SIP内存立方体。对于使用HMC1.1协议的Xilinx和Altera

2021-04-22 06:20:38 84 1

原创 先进一站式IP及定制

先进一站式IP及定制芯动科技15年来立足中国本土,目前已实现从130nm到5nm工艺高速混合电路IP核全覆盖,且所有IP均自主可控,一站式赋能国产芯片发展。提供经过批量生产验证或硅验证的IP产品,根据要求进行量身定制。IP工艺列表全球六大半导体厂(SMIC / TSMC / GF /三星/ UMC / HLMC)130nm到7nm / 5nm工艺全覆盖IP的优势...

2021-04-22 06:08:05 50

原创 BTC芯片介绍

BTC芯片介绍Innosilicon宣布全球第一和最佳的28nm比特币ASIC和参考矿机A1Craft(也称为A1)是2013年世界上最好的BTC ASIC,这是比特币区块哈希算法的易于使用,定制开发,高度优化的ASIC硬件实现,具有迄今为止最高的功率效率。这是基于Global Foundries的28nm HPP(高性能工艺)开发的,具有创新的冗余体系结构,可确保服务器网格的可靠性。性能是市场上任何现有产品都无法比拟的。通过调整PLL输出时钟频率和/或结合电压调整,A1具有从低功耗到超频高性能的工作

2021-04-22 05:53:00 88

原创 ONNX MLIR方法

ONNX MLIR方法MLIR中的开放式神经网络交换实现。Prerequisitesgcc >= 6.4libprotoc >= 3.11.0cmake >= 3.15.4在UNIX上安装MLIR首先,安装MLIR(作为LLVM-Project的一部分):git clone https://github.com/llvm/llvm-project.gitCheck out a specific branch that is known to work with ONNX

2021-04-21 06:10:05 62

原创 MLIR中间表示和编译器框架

MLIR中间表示和编译器框架TensorFlow生态系统包含许多在软件和硬件堆栈的多个级别上运行的编译器和优化器。作为TensorFlow的日常用户,使用不同类型的硬件(GPU,TPU,移动设备)时,此多级堆栈可能会表现为难以理解的编译器和运行时错误。TensorFlow可以通过多种不同方式运行:• 发送到TensorFlow执行程序,该执行程序调用手写的操作内核• 转换为XLA高级优化器表示形式(XLA HLO),后者又可以调用用于CPU或GPU的LLVM编译器,或者继续将XLA用于TPU。(或两

2021-04-21 05:52:17 84

原创 Non-Maximum Suppression,NMS非极大值抑制

Non-Maximum Suppression,NMS非极大值抑制概述非极大值抑制(Non-Maximum Suppression,NMS),顾名思义就是抑制不是极大值的元素,可以理解为局部最大搜索。这个局部代表的是一个邻域,邻域有两个参数可变,一是邻域的维数,二是邻域的大小。这里不讨论通用的NMS算法(参考论文《Efficient Non-Maximum Suppression》对1维和2维数据的NMS实现),而是用于目标检测中提取分数最高的窗口的。例如在行人检测中,滑动窗口经提取特征,经分类器分类识

2021-04-20 06:25:33 49

原创 华为计算平台MDC810发布量产

华为计算平台MDC810发布量产塞力斯的发布会刚刚结束,会上塞力斯SF5自由远征版也确实让人眼前一亮。全球首款4S级加速能力、1000+km续航新能源作为这款车的卖点。续航1000+km成了最近比较流行的一个参数。不过,这里大家也不要被过多的迷惑,所谓的1000+km续航是在满电满油的情况下达到的,其实是一个“油电续航”。当然,今天的重点不是它,而是华为的DriveONE三合一电驱动系统。华为,不讲武德?不同于智能手机前期的概念图、PPT、宣传等,华为的“造车”声势有点不同,好像不造整车的声

2021-04-20 06:05:51 172

原创 华为4D成像雷达、智能驾驶平台MDC 810

华为4D成像雷达、智能驾驶平台MDC 8102020年10月底,华为发布了HI品牌,在今年2021年上海国际车展前夕,华为以 “专新致智” 为主题,举办HI新品发布会,发布了包括4D成像雷达、AR-HUD、MDC810在内的新一代智能化部件和解决方案。作为智能汽车增量部件供应商,华为以Huawei Inside创新模式与车企深度合作,Huawei Inside包括1个全新的智能汽车数字化架构和5大智能系统,智能驾驶、智能座舱、智能电动、智能网联和智能车云服务,以及30多个智能化部件。在HI新品发布会上

2021-04-20 05:47:00 134

原创 AIFramework基本概念整理

AIFramework基本概念整理本文介绍:• 对天元 MegEngine 框架中的 Tensor, Operator, GradManager 等基本概念有一定的了解;• 对深度学习中的前向传播、反向传播和参数更新的具体过程有更加清晰的认识;• 通过写代码训练一个线性回归模型,对上面提到的这些概念进行具体的实践,加深理解。请先运行下面的代码,检验环境中是否已经安装好 MegEngine(访问官网安装教程):[1]:import megengineprint(megengine.versio

2021-04-19 06:16:08 62

原创 AICompiler动态shape编译框架

AICompiler动态shape编译框架移动互联网的兴起,不仅产生了海量数据,也对人机交互有了新的定义。企业如何动态处理不同规格图片数据,如何更灵活处理不同长度的对话语料等等,提升企业运营效率,争取更多的商业机会和流量,成为众多企业探索的热门技术应用。近期,阿里云机器学习PAI团队全新上线一套Dynamic Shape Compiler框架,不仅作为AICompiler技术栈中原有的Static Shape Compiler框架的重要补充,更是增加了Compiler在企业级数据处理应用的无限可能,在提

2021-04-18 19:14:49 20

原创 深度学习编译与优化Deep Learning Compiler and Optimizer

深度学习编译与优化Deep Learning Compiler and Optimizer

2021-04-18 07:58:37 23

原创 NNVM Compiler,AI框架的开放式编译器

NNVM Compiler,AI框架的开放式编译器深度学习已变得无处不在且不可或缺。在多种平台(例如手机,GPU,IoT设备和专用加速器)上部署深度学习工作负载的需求不断增长。宣布了TVM堆栈,以弥合深度学习框架与面向性能或效率的硬件后端之间的鸿沟。TVM堆栈使为深度学习框架轻松构建端到端编译变得容易。拥有适用于所有框架的统一解决方案甚至会更好。威斯康星大学艾伦分校和AWS AI团队以及其他贡献者,宣布NNVM编译器的发布,NNVM编译器是一种开放式深度学习编译器,用于将前端框架工作负载直接编译到硬件后

2021-04-18 07:08:09 34

原创 Tengine AIFramework框架

Tengine AIFramework框架在开源大势下,以数据、算力、算法为三驾马车的人工智能实现了初级阶段的产业化落地。任何一个技术领域成熟的标志是从应用到平台的成功迭代,AI 也不例外,最终引导 AI 走向成熟的必将是软件平台。以史为鉴,回看过往 PC 时代,Windows 的普及,带来海量差异化业务应用的繁荣,迎来了互联网的快速发展;移动互联网时代,Android、iOS 二分天下,让移动应用开发者得以乘风破浪,千万级的 APP 充实了生活的各个场景,便捷愉悦的同时,业态升级随之而来。那么,在万亿

2021-04-18 06:32:00 23

原创 Tvm一些基本技术

Tvm一些基本技术一、总体流程:TVM的工作流程:首先,将网络表示成统一的表示形式(Intermediate Representation),并进行一些可重用的图优化;然后,利用不同的后端生成对应设备代码,如图1所示。 图1 tvm 工作流程首先,将不同的框架下的模型载入,并使用NNVM将模型转换成中间表示的计算图,并对图进行优化,如算子融合、减枝、图变换等;然后,TVM对张量运算进行优化,TVM将代码的调度和计算分开(计算:定义需要进行的运算,调度:具体如何

2021-04-17 06:20:28 104

原创 北汽蓝谷和北汽新能源

北汽蓝谷和北汽新能源北汽蓝谷和北汽新能源关系北汽蓝谷不等于是北汽新能源。北汽新能源是北汽蓝谷的子公司。北汽蓝谷由北京汽车集团公司牵头组织北京汽车股份有限公司、北京新能源汽车股份有限公司、北汽鹏龙汽车服务贸易股份有限公司和华夏出行有限公司等企业出资成立。北京新能源汽车股份有限公司(以下简称“北汽新能源”)创立于2009年,由世界500强企业北京汽车集团有限公司发起并控股,是我国首家独立运营、首个获得新能源汽车生产资质、首家进行混合所有制改革、首批试点国有企业员工持股改革的新能源汽车企业。2018年8月8

2021-04-17 05:36:58 150

原创 PyTorch 自动微分示例

PyTorch 自动微分示例autograd 包是 PyTorch 中所有神经网络的核心。首先简要地介绍,然后训练第一个神经网络。autograd 软件包为 Tensors 上的所有算子提供自动微分。这是一个由运行定义的框架,以代码运行方式定义后向传播,并且每次迭代都可以不同。从 tensor 和 gradients 来举一些例子。1、TENSORtorch.Tensor 是包的核心类。如果将其属性 .requires_grad 设置为 True,则会开始跟踪针对 tensor 的所有操作。完成计算后

2021-04-16 06:09:54 20

原创 北汽极狐ARCFOX与华为合作

北汽极狐ARCFOX与华为合作全球首款激光雷达量产车2021年,是激光雷达“上车”的元年。曾经价格高不可攀,只能用于Robotaxi、无人车测试的激光雷达,终于彻底具备商业化条件。因为,4月17日,目前全球唯一的城市通勤自动驾驶量产车,即将在中国上市。抢下这个“全球第一”,中国蓝谷旗下ARCFOX极狐汽车,用的是华为去年发布的量产激光雷达方案。而这款ARCFOX极狐阿尔法S华为HI版的激光雷达,搭载的“华为HI智能汽车解决方案”的一部分。“超大杯”激光雷达方案自从自动驾驶技术走入大众视线以来

2021-04-16 05:53:19 189

原创 PyTorch Data Parrallel数据并行

PyTorch Data Parrallel数据并行• 可选择:数据并行处理• 本文将学习如何用 DataParallel 来使用多 GPU。 通过 PyTorch 使用多个 GPU 非常简单。可以将模型放在一个 GPU:• device = torch.device(“cuda:0”)• model.to(device)• 可以复制所有的张量到 GPU:• • mytensor = my_tensor.to(device)• • 调用 my_tensor.to(device) 返回

2021-04-15 05:26:40 26

原创 NVIDIA 自动驾驶软件平台

NVIDIA 自动驾驶软件平台SoftwareDevelopers using DRIVE AGX Developer Kits may choose between:• DRIVE OS 5.2.0 and DriveWorks 3.5 which includes more recent versions of CUDA and TensorRT.• DRIVE Software 10.0 which is intended for Hyperion Developers.软件使用DRIV

2021-04-14 06:15:44 62

原创 华为MDC自动驾驶

华为MDC自动驾驶智能驾驶汽车中,包含四个核心子系统:传感器、计算平台、执行器与应用算法,华为MDC( Mobile Data Center: 移动数据中心)定位为智能驾驶的计算平台。此平台集成了华为在ICT领域30多年的硏发与生产制造经验,搭载智能驾驶操作系统AOS、VOS及MDC Core,兼容AUTOSAR,支持L2+~L5平滑演进, 结合配套的完善工貝链,客户或生态合作伙伴可灵活快速的开发岀针对不同应用场景的智能驾驶应用。华为MDC平台致力于通过底层技术与架构创新,坚持“平台+生态”的在战略,为

2021-04-14 06:00:52 207

原创 多平台Gstreamer Multiplatform

多平台Gstreamer MultiplatformGStreamer可在所有主要操作系统上运行,例如Linux,Android,Windows,Max OS X,iOS,以及大多数BSD,商业Unix,Solaris和Symbian。已被移植到各种操作系统,处理器和编译器。可以在所有主要硬件体系结构上运行,包括x86,ARM,MIPS,SPARC和PowerPC,以及32位和64位以及小端或大端。GStreamer可以桥接到其它多媒体框架,以便重用现有组件(例如编解码器)并使用平台输入/输出机制:•

2021-04-13 05:59:19 58

原创 GStreamer 1.18.4稳定的错误修复版本

GStreamer 1.18.4稳定的错误修复版本GStreamer团队宣布最喜欢的跨平台多媒体框架的稳定的1.18版本系列中的另一个错误修复版本!此版本仅包含错误修复和重要的安全修复程序,并且从1.18.x更新应该是安全的。突出显示的错误修正Highlighted bugfixes:• 重要的安全修复程序,用于ID3标签读取,matroska和Realmedia解析以及gst-libav音频解码• 音频混音器,音频聚合器:输入缓冲区处理修复• encodebin3:改进流选择消息处理• ur

2021-04-13 05:43:29 66

原创 Pass算子python 函数

Pass算子python 函数函数• 函数是代码的一种组织形式• 函数应该能完成一项特定的工作,而且一般一个函数只完成一项工作• 有些语言,分函数和过程两个概念,通俗解释是,有返回结果的是函数,无返回结果的叫过程,python不加以区分• 函数的使用o 函数使用需要先定义o 使用函数,俗称调用定义一个函数只是定义的话不会执行1. def关键字,后跟一个空格2. 函数名,自己定义,起名需要遵循便令命名规则,约定俗成,大驼峰命名只给类用3. 后面括号和冒号不能省,括号内可以有参数4.

2021-04-12 05:21:47 93

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除